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1 Math: Functions

Lecture: https://youtu.be/-Ia9Wv5USaE

Functions are maps from one set to another set. We denote them as f : A → B
or f(x) ∈ B where x ∈ A.

Examples of functions f : R → R:

• Particle’s x coordinate x(t) = 5 sin(2t)

• Particle’s x component of velocity vx(t) = 10 cos(2t)

• Particle’s x component of acceleration ax(t) = −20 sin(2t)

• Potential Energy of spring mass system U(x) = 1
2k(x− x0)

2

• Current flowing through Resistor Capacitor circuit I(t) = I0e
−t/RC

• Kinetic Energy in terms of speed T (|v⃗|) = 1
2m|v⃗|2

Examples of functions f : R → R3:

• Particle path in 3D s⃗(t) =

 x(t)
y(t)
z(t)


Examples of functions f : R3 → R:

• Gravitational Potential ϕ(x, y, z) = − GM√
x2+y2+z2

• Electric Potential Energy ϕ(r⃗) = −kQq
|r⃗| . The arrow above r⃗ means it is a

vector (more on this later)

• Temperature T (r⃗)

Examples of functions f : R3 → R3:

• Gravitational Force F⃗ (x, y, z) = − GMm
(x2+y2+z2)3/2

 x
y
z


• Electrostatic Force F⃗ (r⃗) = kQq

|r⃗|2 r̂. The hat above r̂ means it is a unit

vector (scaled r⃗ to have length 1).
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2 Math: Differentiation

You probably know how to calculate the gradient of a linear (aka straight) graph.

m =
y1 − y0
x1 − x0

This works if the graph is linear, i.e. y = mx + c. But what happens if the
graph is not linear? e.g. y = x2. How can we calculate the gradient of this
curvy graph? Answer is Differentiation.

(Most) functions can be differentiated with respect to their parameters.
Algebraically, differentiation involves following a set of rules. Geometrically,
differentiation is the slope of the tangent line to the function’s graph.

2.1 Geometric Intuition

Lecture: https://youtu.be/JYnXMoB288Q

https://www.desmos.com/calculator/b6ts3ls1zfDesmos visualization. Given
a function f(x), here’s what the derivative d

dxf = df
dx = f ′(x) means:

• Draw the graph y = f(x).

• For each x = x0 value, find the point on the graph (x0, f(x0)).

• Draw a (straight) tangent line to the graph at that point.

• Calculate the gradient of that tangent line.

• This gradient is the ”derivative of f at x = x0”.

• If you chose a different x = x1 value, you would get a different value for
gradient, and that would be ”derivative of f at x = x1”.

• So the derivative of a function f(x) is another function f ′(x).

2.2 Algebraic Calculations

Lecture: https://youtu.be/QpSQmggia74

From the above geometric explanation, one can calculate the derivative of
f(x) = x2 to be f ′(x) = 2x. This method of differentiation is called ”from
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first principles”.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(
(x+ h)2

)
−

(
x2

)
h

= lim
h→0

x2 + 2hx+ h2 − x2

h

= lim
h→0

2hx+ h2

h

= lim
h→0

h(2x+ h)

h

= lim
h→0

2x+ h

= 2x

Lecture: https://youtu.be/Zg_6w0urW5Q

One can use first principles to derive the following rules of differentiation for
common functions:

• Linearity (Adding)

d

dx
[f(x) + g(x)] =

df

dx
+

dg

dx
(1)

d

dx
[cf(x)] = c

df

dx
(2)

• Polynomial
d

dx
xn = nxn−1

• Trigonometry

d

dx
sin(x) = cos(x) (3)

d

dx
cos(x) = − sin(x) (4)

• Exponential
d

dx
ex = ex

• Product Rule
d

dx
[f(x)g(x)] = f(x)

dg

dx
+ g(x)

df

dx

• Chain Rule
d

dx
f(y(x)) =

df

dy

dy

dx

10
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2.2.1 Finding Maximum / Minimum

Lecture: https://youtu.be/McI7tyS_BCo

When the function f(x) has a maximum xmax, the derivative at that maximum
point is zero

df

dx

∣∣∣∣
xmax

= 0

Likewise for minimum.

So if the function has 0 derivative at some x = x0, how do we determine if it’s
a maximum or minimum point? We can perform the 2nd derivative test.

d2f

dx2

∣∣∣∣
x0

> 0 : Minimum (5)

d2f

dx2

∣∣∣∣
x0

< 0 : Maximum (6)

d2f

dx2

∣∣∣∣
x0

= 0 : Not enough information to conclude (7)

2.3 Exercises

Try differentiating the following functions with respect to x or t. You can check
your answer against Wolfram Derivative Calculator https://www.wolframalpha.
com/calculators/derivative-calculator/.

• d
dxx

4 + x2

• d
dt5t+ 3

• d
dx

1
x

• d
dt sin(2t)

• d
dte

−5t

• d
dx tanx

Extra: If the function of multiple variables is differentiated, it’s called
multivariate calculus. Multivariate calculus is used in Electromagnetism
(Maxwell’s Equations).

3 Math: Integration / Anti-Differentiation

Geometrically, (definite) integration gives you the area under the graph. Al-
gebraically, there are a few techniques for common functions but integration is
tricky in general.

11

https://youtu.be/McI7tyS_BCo
https://www.wolframalpha.com/calculators/derivative-calculator/
https://www.wolframalpha.com/calculators/derivative-calculator/


3.1 Indefinite Integration / Antiderivative

Lecture: https://youtu.be/Nm8WVmlnxN8

Q: If I give you a function f(x) and told you that it’s derivative is f ′(x) = 2x+1,
can you find out what f(x) is?
A: f(x) = x2+x+C where C is an arbitrary constant. Why are there multiple
answers?

Mathematically, we say ∫
2x+ 1 dx = x2 + x+ C

More generally, ∫
f ′(x)dx = f(x) + C

3.2 Exercises

You can check whether you are correct by putting your answer in the derivative
calculator and checking if you get the function to be integrated!

•
∫
5 dx

•
∫ (∫

−10dt
)
dt

•
∫
sin(5t) dt

•
∫
(1/x2)dx

Extra: Some functions have antiderivatives that cannot be even expressed
analytically, such as ∫

e−x2

dx

3.3 Definite Integration / Area under graph

Lecture: https://youtu.be/0IHvAyIaY44

Lecture (Side Note about Signed Area): https://youtu.be/g_tr0sqJxM8

You can calculate the area under a curve by performing a definite integral.

Area under f ′(x) from (x = a) to (x = b) =

∫ b

a

f ′(x) dx (8)

= [f(x) + C]
b
a (9)

= f(b)− f(a) (10)

Q: Why does the arbitrary constant C not appear in the formula for area
under the graph?

A: It cancels out: [f(b)+C]− [f(a)+C]. Can you imagine this graphically?
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3.4 Exercises

Lecture: https://youtu.be/ZlvM1BZRFXo

• Energy in Spring ∫ x

0

kr dr

• Energy in Capacitor ∫ Q

0

q

C
dq

• Gravitational Potential ∫ ∞

r

1

x2
dx

4 Physics: Kinematics

Lecture: https://youtu.be/c527UZUQM0s

After picking a direction which you define as ”increasing x direction” as well as
an origin for x, you can start describing 1D motion x(t).

If you want to describe 2D motion, pick a perpendicular y-axis.

If you want to describe 3D motion, z-axis is defined using RHR (for the cross
product).

4.1 Path of Particle / Object

Lecture: https://youtu.be/vszG98TSd6Q

Mathematically, paths are functions s⃗(t) of a parameter t representing time.

• In 1D motion, x(t)

• In 2D motion, x(t), y(t)

• In 3D motion, x(t), y(t), z(t)

To understand an object’s behaviour, our goal is to solve for the 3 functions
x(t), y(t), z(t), meaning we obtain a formula like y(t) = 2t−5t2. Knowing where
the object is at every snapshot in time allows us to calculate it’s velocity v⃗(t),
it’s acceleration a⃗(t), how long it’ll take to travel from A to B (∆t = tB − tA),

the forces F⃗ (s⃗(t)) acting on it at any time, etc.
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4.2 SUVAT

v(t) = u+ at (11)

s(t) = ut+
1

2
at2 (12)

v(s)2 = u2 + 2as (13)

s(t) =
v(t) + u

2
t (14)

s(t) = v(t)t− 1

2
at2 (15)

SUVAT laws can be derived from calculus with the following definitions.

Let s(t) be the function representing the particle’s (1D) coordinate.

v(t) :=
ds

dt
(16)

a(t) :=
dv

dt
=

d2s

dt2
(17)

If acceleration is constant, i.e.

a(t) =
d2s

dt2
= a0

for some constant a0, then one can integrate the above equation once and twice
to get 2 of the SUVAT laws

v(t) = a0t+ v0 (18)

s(t) =
1

2
a0t

2 + v0t+ s0 (19)

where we identify a0 ≡ a, v0 ≡ u, s0 ≡ 0 to match 11 and 12.

The other 3 equations can be obtained from the first 2 with a bit of algebra.

4.3 Geometric Intuition

SUVAT can be visualized as an area of a trapezium in the v-t graph. [Demon-
strate in class]
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4.4 Exercises

4.4.1 SJPO 2018 General Round Q13

Travelling with an initial speed of 70 km/h, a car accelerates at 6000 km/h2

along a straight road. How long will it take to reach a speed of 120 km/h ?

(A) 30 s

(B) 45 s

(C) 60 s

(D) 70 s

(E) 180 s

Ans: A

4.4.2 SJPO 2015 General Round Q13

Lecture: https://youtu.be/j9qWyWCTjrM

An object is travelling on a straight path and exhibiting a constant acceleration
a starts off with an initial velocity v = 2.0 ms−1. It has traversed 4.5 m in the
third second (from t = 2 to t = 3), its acceleration a is

(A) 0.5 ms−2

(B) 1.0 ms−2

(C) 1.5 ms−2

(D) 2.0 ms−2

(E) 2.5 ms−2

Ans: B

4.4.3 SJPO 2016 General Round Q8

Lecture: https://youtu.be/Q3ZbXLegdos
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A train moving on straight horizontal tracks slows down from 66 ms−1 to
22 ms−1 at a constant rate of 2.0 ms−2. What distance does it travel while
slowing down?

(A) 490 m

(B) 650 m

(C) 740 m

(D) 970 m

(E) 1100 m

Ans: D

4.4.4 SJPO 2018 General Round Q10

Lecture: https://youtu.be/gLHMK0g8JYc

The position of an object moving along a linear track is plotted as a function of
time. It started from rest and underwent a positive acceleration for some time,
followed by a constant velocity. Which of the following graphs correctly shows
this situation?

Ans: E

4.4.5 SJPO 2018 General Round Q16 & Q17

Lecture: https://youtu.be/5M1mQjZJWI4

16

https://youtu.be/gLHMK0g8JYc
https://youtu.be/5M1mQjZJWI4


A car travels along a straight road with the speed shown by the v-t graph.

16. What is the acceleration of the car from t = 30 to t = 48 s ?

(A) −54 m/s2

(B) 48 m/s2

(C) −3.0 m/s2

(D) 3.0 m/s2

(E) −0.33 m/s2

Ans: E

17. What is the total displacement of the car after 48 s ?

(A) 36 m

(B) 48 m

(C) 144 m

(D) 180 m

(E) 210 m

Ans: C

4.4.6 SJPO 2017 General Round Q1

Lecture: https://youtu.be/TW3sIS0lprI
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An electron in a vacuum, starting from rest falls 5 cm near the surface of the
earth. Considering only the gravitational force acting on the electron, how long
does it take for the electron to travel 5 cm?

(A) 0.1 s

(B) 0.03 s

(C) 0.01 s

(D) 0.001 s

(E) 0.0001 s

Ans: A

4.5 1D Dynamics

Lecture: https://youtu.be/xWJjy_5M4lA

If we know the acceleration as a function of time a(t), as well as the initial
velocity v(t = 0) ≡ v0 and position s(t = 0) ≡ s0, then we can integrate a(t)
twice to get the position as a function of time

s(t) =

∫ (∫
a(t) dt

)
dt

To obtain this a(t), we use Newton’s 2nd law

Fnet(t) =
d(mv)

dt
= m

dv

dt
+ v

dm

dt

In (most) cases where m(t) is a constant wrt time,

Fnet(t) = ma(t)

4.6 Extra: v2 = u2 + 2as Connection with Work Energy
Theorem

Lecture: https://youtu.be/1Z9V-1STA_Y

v2 = u2 + 2as is slightly special because it is related to ”work energy theorem”
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in dynamics. One can derive it by integrating a(t) wrt s(t) instead of t

d2s

dt2
= a0 (20)

d

dt

(
ds

dt

)
ds

dt
dt = a0ds (21)

1

2

d

dt

(
v(t)2

)
dt = a0ds (22)∫ tB

tA

1

2

d

dt

(
v(t)2

)
dt =

∫ sB

sA

a0ds (23)∫ vB

vA

1

2
d
(
v2
)
= a0(sB − sA) (24)

1

2
(v2B − v2A) = a0(sB − sA) (25)

v2B = v2A + 2a0(sB − sA) (26)

where we identify vB ≡ v, vA ≡ u, sB ≡ s, sA ≡ 0, a0 ≡ a to match 13.

5 Math: 3D Vectors

I made some H2 math videos on vectors

• https://youtu.be/zohpKrmHkc0 Adding, scaling, subtraction of vectors

• https://youtu.be/LhXac_HUw-0 Dot product

• https://youtu.be/1qruXfQRQJU Cross product

In order to describe 3D motion we have 3 functions x(t), y(t), z(t). To avoid
writing three equations, we often package them into a position vector.

r⃗(t) =

 x(t)
y(t)
z(t)

 (27)

Geometrically, a vector can be thought of as an arrow. It is the ”displacement
between 2 points in 3D space”, and points in a particular direction and has a
length/magnitude.

5.1 Vector Operations

5.1.1 Adding

Algebraically, just add each component individually x1

y1
z1

+

 x2

y2
z2

 =

 x1 + x2

y1 + y2
z1 + z2
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Geometrically,

5.1.2 Scaling

Algebraically, scale each component individually

λ

 x
y
z

 =

 λx
λy
λz


Geometrically, if you scale a vector by a positive real number, direction stays

the same but length is changed.

If scaled by a negative number, the direction flips (and length changes too).

5.1.3 Length

Algebraically, length is calculated using Pythagoras’ theorem.∣∣∣∣∣∣
 x

y
z

∣∣∣∣∣∣ =
√
x2 + y2 + z2
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5.1.4 Dot Product

Dot product takes 2 vectors and outputs a single real number. x1

y1
z1

 ·

 x2

y2
z2

 = x1x2 + y1y2 + z1z2

Geometrically, dot product is a measure of how similar the direction of the 2
vectors are.

a⃗ · b⃗ = |⃗a||⃗b| cos θ
where θ is the angle between the 2 vectors.

The dot product is used to define

• Work Done W.(D) =
∫
F⃗ · dr⃗

• Magnetic Flux Φ =
∫
B⃗ · dA⃗

5.1.5 Cross Product

Cross product takes 2 vectors and outputs another vector. x1

y1
z1

×

 x2

y2
z2

 =

 y1z2 − z1y2
z1x2 − x1z2
x1y2 − y1x2


Geometrically, the length of the cross product is the area of the parallelo-

gram. The direction of the cross product is perpendicular (following right hand
rule).

The cross product is used to define

• Torque τ⃗ = r⃗ × F⃗

• Angular Momentum L⃗ = r⃗ × p⃗

• Lorentz Force F⃗ = q(E⃗ + v⃗ × B⃗)

• Poynting Vector S⃗ = 1
µ0
E⃗ × B⃗
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5.1.6 Derivatives

Also done component wise

dr⃗

dt
=

d

dt

 x
y
z

 =

 dx/dt
dy/dt
dz/dt


5.2 Basis Vectors

We sometimes write a vector as

r⃗ =

 x(t)
y(t)
z(t)

 (28)

= x(t)

 1
0
0

+ y(t)

 0
1
0

+ z(t)

 0
0
1

 (29)

≡ x(t)̂i+ y(t)ĵ + z(t)k̂ (30)

Common synonyms for î are x̂ and êx. The collection of vectors {̂i, ĵ, k̂} are
called a set of basis vectors, which means that linear combinations of these
vectors make up / span the set of all possible vectors. In particular, this set

{̂i, ĵ, k̂} is called the Cartesian coordinate basis. In future, we will learn
about other coordinate systems and other basis vectors.
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5.3 Exercises

5.3.1 SJPO 2015 General Round Q11

A force F⃗ = F⃗1 + F⃗2 can be decomposed as the sum of 2 vectors F⃗1 and F⃗2.
Only the magnitude of F⃗1 and the direction of F⃗2 are known. Which of the
following is the most accurate statement?

(A) Only one combination of F⃗1 and F⃗2 exists.

(B) There exists exactly two combinations of F⃗1 and F⃗2.

(C) There exists infinite combinations of F⃗1 and F⃗2.

(D) At least three combinations of F⃗1 and F⃗2 exist but the total number
of combinations is finite.

(E) Only one or two combinations of F⃗1 and F⃗2 exist.

Ans: E

5.3.2 SJPO 2016 General Round Q21

Initially, a 1 kg box was sliding on frictionless surface at a constant velocity of
4 ms−1 in the x direction. A constant force of 1 N was applied on the box in
a fixed direction for a time duration of 5 s. After 5 s the speed of the box is
3 ms−1. What is the magnitude of the change in momentum of the box?

(A) 1kgms−1

(B) 2kgms−1

(C) 3kgms−1

(D) 4kgms−1

(E) 5kgms−1

Ans: E

Extra: What are the possible directions of the applied force?

23



6 Physics: Newtonian Mechanics

The following quantities are scalars (real numbers)

• mass m

• speed |v⃗|

• kinetic energy E = 1
2m|v⃗|2

• potential energy U

The following quantities are vectors

• position r⃗(t)

• velocity v⃗(t) ≡ dr⃗
dt

• acceleration a⃗(t) ≡ d2r⃗
dt2

• force F⃗ (t)

• momentum p⃗(t) ≡ mv⃗(t)

6.1 Newton’s Three Laws

https://youtu.be/M6uYi0lcOvU Newton’s 1st law defines what an inertial ref-
erence frame is: In an inertial reference frame, an object at rest remains at
rest, or if in motion, remains in motion at a constant velocity unless acted on
by a net external force.

In an inertial reference frame, Newton’s 2nd law

F⃗net =
d(mv⃗)

dt

Newton’s 3rd law
F⃗A on B(t) = −F⃗B on A(t)

6.2 Momentum & Impulse

https://youtu.be/TiOSscc8TKw Change in a particle’s momentum is equal to
the impulse it experiences.

Newton’s 2nd law: Let F⃗ (t) be the net force on a particle, then

F⃗ (t) =
dp⃗

dt
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Let’s focus on one component of the vector equation (say Fx, px)

Fx(t) =
dpx
dt

Integrating both sides wrt time t from t = tA to t = tB yields

∫ tB

tA

Fx(t)dt =

∫ tB

tA

dpx
dt

dt (31)∫ tB

tA

Fx(t)dt =

∫ px(tB)

px(tA)

dpx (32)

= px(tB)− px(tA) (33)

= ∆px (34)

If a particle experiences a force F⃗ (t) over a time period tA to tB , it’s (x-

component of) momentum will change by ∆px =
∫ tB
tA

Fx(t)dt.

This is true for each component x, y, z so actually it is a vector equation

∆p⃗ =

∫ tB

tA

F⃗ (t)dt

The quantity on the right hand side is called impulse.

6.3 Kinetic Energy & Work

https://youtu.be/DYRDr_ADIAM Often in physics, it is unnecessary to know
the exact path x(t) of a particle. Sometimes, the question only requires us to
know v(t).

Example: A particle of mass m experiences a force F (x(t)) = A
x(t)2 . It starts

at x(0) = x0, x0 > 0 with an initial speed of v0 toward x = 0. Where will the
particle come to a rest?

One way of solving this is to find the function x(t) that satisfies F = ma

A

x2
= m

d2x

dt2

This is a differential equation, which we will cover later. We realise we cannot
integrate wrt t because the LHS itself is a function of t we do not know the
expression for. We will actually integrate wrt x(t). We need to massage the
equation into a different form first.

By chain rule,

d

dt

[(
dx

dt

)2
]
= 2

dx

dt

d2x

dt2
(35)

25

https://youtu.be/DYRDr_ADIAM


Substituting this back in and simplifying

A

x2
=

m

2dx
dt

d

dt

[(
dx

dt

)2
]

(36)

=
m

2

d

dx

[(
dx

dt

)2
]

(37)

=
m

2

d

dx
v2 (38)

Then integrating from the starting to the stopping point wrt x instead of t,∫ xstop

x0

A

x2
dx =

m

2

∫ v2
stop =0

v2
0

d

[(
dx

dt

)2
]

(39)

[
−A

x

]xstop

x0

=

[
1

2
mv2

]v2=0

v2=v2
0

(40)

A

x0
− A

xstop
= −1

2
mv20 (41)

A

x0
+

1

2
mv20 =

A

xstop
(42)

xstop = A

(
A

x0
+

1

2
mv20

)−1

(43)

The left hand side of Equation 42 is actually potential energy + kinetic energy.
We will talk about potential energy in future, but for now we observe that
integrating F with respect to x instead of t was a useful trick. Generalizing this
to a general force F ,

F = ma (44)∫ xB

xA

Fdx = m

∫ xB

xA

adx (45)

Claim: a dx = v dv. Proof:

v dv =
1

2
d
(
v2
)

(46)

=
1

2

d

dt

(
v2
)
dt (47)

=
1

2
2va dt (48)

= a v dt (49)

= a dx (50)
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So by a change in variables, a dx = v dv.∫ xB

xA

Fdx = m

∫ xB

xA

adx (51)

= m

∫ vB

vA

vdv (52)

=
1

2
m

[
v2
]vB
vA

(53)

=
1

2
mv2B − 1

2
mv2A (54)

= ∆K.E. (55)

In other words, if a particle experiences a force F (x) over a distance interval
from xA to xB , it’s change of kinetic energy ∆

(
1
2mv2

)
is given by

∆K.E. =

∫ xB

xA

F (x) dx

which we call the work done on the particle. This is the Work Energy
theorem.

Extra: Mathematically, what we have actually done is we have transformed
a 2nd order ODE a(x) into a 1st order ODE v(x), which should be easier to
integrate in general.

7 Physics: Projectile Motion

https://youtu.be/-Yq6wzXTU84

F⃗net = ma⃗ (56)

⇒

 0
−mg
0

 = m

 d2x/dt2

d2y/dt2

d2z/dt2

 (57)

Integrating twice with respect to time t, x(t)
y(t)
z(t)

 =

 uxt+ r0x
− 1

2gt
2 + uyt+ r0y
uzt+ r0z

 (58)

We need to know the initial position r⃗0 ≡ r⃗(t = 0) and initial velocity u⃗ ≡ v⃗(t =
0). For example,

r⃗(t = 0) =

 0
0
0

 (59)

v⃗(t = 0) =

 u cos θ
u sin θ

0

 (60)
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Then that gives us the path of the projectile with respect to time

x(t) = u cos θ t (61)

y(t) = u sin θ t− 1

2
gt2 (62)

z(t) = 0 (63)

This is also known as a parametric curve, with time t being the parameter.
Every value of t gives us a point in space (x(t), y(t), z(t)).

7.1 From parametric to y(x)

https://youtu.be/IfFNoepeMow If we want to convert parametric curve into
a formula for the graph y(x), then we need to invert Equation 61 to yield

t(x) =
x

u cos θ

Substituting t(x) into y(t) gives us y(x)

y(x) = tan θ x− g

2u2 cos2 θ
x2 (64)

7.2 Finding Range

There are 2 solutions to y(x) = 0: the starting one being xstart = 0. The other
is

xend =
2u2

g
sin θ cos θ =

u2

g
sin 2θ

We now have range as a function of angle xend(θ). We can differentiate this
with respect to θ and set the derivative dxend/dθ = 0 to find the maximum
range. Strictly speaking, we have to check the second derivative too.

7.3 Exercises

7.3.1 SJPO 2016 General Round Q9

https://youtu.be/gBjapzk5Tws
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A fruit drops from a tree. A boy, 1.5 m tall, stands on the flat ground just under
the fruit. The fruit was initially 10 m above the boy’s head. A woman standing
on the level ground 10 m from the boy immediately throws a ball from a height
of 1.5 m above the ground, and deflected the fruit from its path towards the
boy’s head. Assume that air resistance and her reaction time are negligible.
Calculate the minimum speed of the ball?

(A) 10ms−1

(B) 15ms−1

(C) 20ms−1

(D) 25ms−1

(E) 30ms−1

Ans: A

7.3.2 SJPO 2016 General Round Q11: Region of Reachability

https://youtu.be/axU4CSp8UqI

A projectile is launched at velocity v0 into an ideal ball istic trajectory from
the origin of a coordinate system. Given that: when the launch angle is varied,
all the possible points that can be hit by the projectile are exactly contained
within a parabola with equation y = a+ bx2 where y is the vertical height, x is
the horizontal displacement from the origin, while a and b are constants. What
could be the expression for a and b ?

(A) a = v0
2

2g , b = g
v02

(B) a = v0
2

2g , b = g
2v02

(C) a = v0
2

2g , b = 2g
v02

(D) a = v0
2

g , b = − g
v02

(E) a = v0
2

2g , b = − g
2v02

Ans: E

Extra: Prove that the envelope is a parabola. https://en.wikipedia.org/

wiki/Envelope_(mathematics)

7.3.3 SJPO 2014 General Round Q12: Projectile on Slope

https://youtu.be/l4lq6dXTug0
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As shown in the figure below, a ball is thrown out horizontally from a slope.
The slope makes an angle θ with the ground. At the first throw, the ball is
ejected with a speed v1 and at the second throw, it is ejected with a speed v2.
The angles that the ball made with the slope are measured to be α1 and α2

respectively. If v1 is greater than v2,

(A) α1 = α2

(B) α1 > α2

(C) α1 < α2

(D) α < θ

(E) It is not possible to infer much as
the mass of the ball is not given.

Ans: A

8 Physics: Constraining Forces

Constraint forces are generally forces that will adjust their magnitude to pre-
vent some form of motion. For example, normal contact force prevents
objects from sinking into each other. Friction prevents rough objects from slid-
ing with respect to each other. And tension in an inextensible string limits the
distance between two objects.

8.1 Normal Contact Force

Normal contact force N between two rigid bodies in contact is a vector:

• Direction: Always normal to the surfaces in contact, opposes ”sinking”

• Magnitude: can range from 0 to ∞. If magnitude is 0, the two bodies is
about to lose contact.

Normal contact force obeys N3L.

8.2 Friction

Frictional force between two rough bodies in contact is a vector:

• Direction: Always parallel to the surfaces in contact, opposes sliding
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• Magnitude: can range from |Ffric| ≤ µsN . If friction is maxed out at
µsN , it will soon be unable to counteract the external forces, and the two
bodies will start sliding.

µs is the static coefficient of friction.

When sliding starts, the magnitude will be limited by the kinetic coefficient of
friction µk instead of µs. Usually µk < µs, which is why you will lose control of
your car if your tyres skid.

8.2.1 SJPO 2015 General Round Q12

As shown in the figure below, the block with mass M is stationary upon the
plank and the angle of the slope θ is increased. Which of the following is true
for the normal force of the block on the wooden plank, N and the frictional
force on the plank, f?

(A) Both N and f increase.

(B) Both N and f decrease.

(C) N increases and f decreases.

(D) N decreases and f increases.

(E) The response differs when the value of
M is different.

Ans: D

Extra: If the static coefficient of friction is µ, at what angle θmax does the block
begin slipping?

8.2.2 SJPO 2016 General Round Q4

A box is pulled using a string up a 0.1 radian slope at constant speed of 2.0 ms−1.
The string is cut suddenly and the box comes to a stop after moving up a
further distance of 1.0 m. What is the value of the coefficient of friction?

(A) 0.00

(B) 0.10

(C) 0.20

(D) 0.30

(E) The situation is im-
possible.

Ans: B
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8.3 Tension

Tension in the string connecting two bodies is a vector:

• Direction: Isotropic and constant anywhere along the string. Parallel
and toward the string at endpoints of string.

• Magnitude: can range from 0 to ∞, unless question specifies a limit. If
the tension is 0, the string is loose.

For a massless string (whether straight or curved on a pulley), tension is equal
everywhere along the string (can be easily proven). This is particular useful for
pulley questions.

We will deal with massive string after talking about ”mass distributions” (Topic
of Moment of Inertia).

Extra: A string on a pulley with friction has an exponential effect in increasing
tension. See https://en.wikipedia.org/wiki/Capstan_equation. We will
cover this in future too.

8.3.1 SJPO 2014 General Round Q41

A block of mass m is attached to a horizontal inextensible string and is moving
upwards as shown in the figute below. Breaking strength of the string is 4mg.
The maximum positive and negative accelerations that the block can have are

(A) 4 g and 3 g respectively.

(B) 4 g and g respectively.

(C) 3g and 4 g respectively.

(D) 3 g and g respectively.

(E) 3 g and 3 g respectively.

Ans: D
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8.3.2 SJPO 2018 General Round Q6

A 4 kg sphere rests on the smooth
parabolic surface which is given by
the equation y = 2.5x2. The sphere
just touches the surface at (x, y) =
(0.4 m, 0.4 m). Determine the mass
mB of block B needed to hold the
sphere in equilibrium.

(A) 4.14 kg

(B) 3.75 kg

(C) 3.58 kg

(D) 2.93 kg

(E) 2.14 kg

Ans: C
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9 Physics: Drag / Air Resistance

Drag is a force dependent on velocity and the geometry of the object.

Fdrag(v) =
1

2
ρv2CD(v)A (65)

• ρ is the density of the fluid

• v is velocity of object relative to fluid

• CD(v) is dimensionless drag coefficient (usually obtained experimentally),
which is a function of velocity

• A is cross sectional area

At low velocities, CD(v) ∝ 1/v approximately, so Fdrag(v) ∝ v

At high velocities, CD(v) is approximately constant, so Fdrag(v) ∝ v2.

In Physics Olympiad, the question will typically specify.

Drag is the reason why falling objects have a terminal velocity

9.1 Terminal Velocity

(Taking the y-axis as downward positive), the net vertical forces on an object
falling is

ma(t) = Fnet(v) = mg − Fdrag(v) (66)

As v(t) increases over time, drag force increases, causing a(t) to decrease. The
resultant motion is that v(t) approaches asymptotically to a constant vterminal,
at which

Fnet(vterminal) = 0

9.2 Exercises

9.2.1 SJPO 2018 General Round Q2

A tiny spherical raindrop of diameter D = 0.1 mm experiences a linear drag
force while falling at speed v, given by Fdrag = cv, where c = 1.55×10−6 N s m−1.
What is its terminal speed?

(A) 1.7 mm/s

(B) 3.3 mm/s

(C) 8.5 mm/s

(D) 26 mm/s

(E) 33 mm/s

Ans: B
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9.2.2 SJPO 2017 General Round Q7

An object, 1, with mass m and another object, 2, with twice the mass 2m
are dropped from rest, at the same starting position from the top of a large
container and fall in a straight line through motionless viscous liquid. Drag is
significant and assume that the two objects would eventually reach the same
terminal velocity vT if the container were tall enough. Consider the case where
the objects do not reach terminal velocity at the bottom of the container. As-
sume that the same type of drag acts on both objects. How does the time taken,
t1 and t2, for the objects 1 and 2 to reach the bottom compare?

(A) t1 = t2

(B) t1 < t2

(C) t1 > t2

(D) t2 < t1 < 2t2

(E) t1 < t2 < 2t1

Ans: A

9.3 Extra: Up and Down with Air Resistance

In a case without air resistance, if we throw a ball up, suppose it takes T1

seconds to reach the peak from the time it was released, and T2 seconds to fall
back down from the peak to the original point of release. One can prove T1 = T2

easily.

In a case with air resistance, suppose the time to reach the peak is τ1 and
the time to drop down is τ2. Prove rigorously that τ1 < τ2.

https://youtu.be/1uaHkc3TfBU

9.4 Extra: Projectile Motion with Drag

It is possible to solve for projectile motion exactly, but only after we study
differential equations. We postpone this to the future.
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10 Physics: Collisions

Collisions between multiple bodies (e.g. dropping a stack of balls) are analysed
as a sequence of collisions between 2 bodies at a time. When 2 bodies collide,
their total momentum is always conserved / invariant before and after the
collision (invariant means doesn’t change). Their total kinetic energy, however,
has 3 possibilities:

• Total KE conserved (elastic)

• Total KE decreased (inelastic) e.g. billiard balls

• Total KE increased (superelastic) e.g. compressed spring, explosion

10.1 Momentum Conservation

https://youtu.be/nJlILp1fBwI

Q: Why is momentum invariant before and after the collision?

A: Momentum conservation is due to Newton’s 3rd Law. To see this, recall that
an object’s momentum changes by impulse

∆p⃗ from t0 to t1 =

∫ t1

t0

F⃗ (t) dt

By Newton’s 3rd Law, when 2 bodies interact, the forces they exert on each
other are equal in magnitude and opposite in direction.

F⃗A on B = −F⃗B on A

Integrating both sides wrt time t, one sees that the impulse they experience is
also equal in magnitude and opposite in direction.

∆p⃗B = −∆p⃗A

As such, the sum of their momentum remains unchanged.

∆(p⃗A + p⃗B) = 0⃗

This remains true for all forces that obey N3L, including collisions (normal
contact force).

10.2 1D Elastic Collisions

https://youtu.be/iwPXjULdcuc

Let the masses be mA,mB , the initial velocities be uA, uB and final velocities
be vA, vB . Conservation of momentum and energies yields

mAuA +mBuB = mAvA +mBvB (67)

1

2
mAu

2
A +

1

2
mBu

2
B =

1

2
mAv

2
A +

1

2
mBv

2
B (68)
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Rearranging both equations gives us (respectively)

mA(uA − vA) = −mB(uB − vB) (69)

mA(uA − vA)(uA + vA) = −mB(uB − vB)(uB + vB) (70)

If we divide equation 70 by 69 we obtain

uA + vA = uB + vB (71)

⇒ uA − uB = −(vA − vB) (72)

This equation is sometimes said verbally as

velocity of approach = velocity of separation

This is because if object A is positioned to the left of object B (and our choice
of axis direction is rightward positive), then a positive uA − uB > 0 would
imply that A is getting closer to B, and uA−uB describes how fast the distance
between them is decreasing. Hence, uA − uB > 0 is called the velocity of
approach.

After the collision, vA − vB = −(uA − uB) < 0 implies that B is getting further
and further away from A. −(vA − vB) > 0 quantifies how fast the distance
between them is increasing. Hence, −(vA − vB) > 0 is called the velocity of
separation.

Anyway, previously we had one linear equation (momentum) and one quadratic
equation (energy). Now we have 2 linear equations (momentum and ”rate of
approach = separation”)

mAuA +mBuB = mAvA +mBvB (73)

uA − uB = −(vA − vB) (74)

Linear simultaneous equations are easy to solve, rearrange equation (74) and
substitute vA = vB − uA + uB into (73) to obtain

mAuA +mBuB = mA(vB − uA + uB) +mBvB (75)

= (mA +mB)vB −mAuA +mAuB (76)

vB =
2mA

mA +mB
uA +

mB −mA

mA +mB
uB (77)

Repeating this with vB = uA − uB + vA gives us

mAuA +mBuB = mAvA +mB(uA − uB + vA) (78)

= (mA +mB)vA +mBuA −mBuB (79)

vA =
mA −mB

mA +mB
uA +

2mB

mA +mB
uB (80)

One sees that the final velocities almost look like they have a nice symmetry
to them. You can memorise these formulas but personally I just derive it every
time I need it because I don’t like memorising.
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10.2.1 SJPO 2017 General Round Q40

https://youtu.be/IVkbicUsFrg

40. A small tennis ball with mass m sits atop a large basketball with mass
M , with M ≫ m. The balls are released from rest, with the bottom of the
basketball at a height h above the ground. The diameter of the tennis ball is
d and that of the basketball is D, with D ≫ d ≈ 0. To what height does the
tennis ball bounce above the ground? Assume all collisions are elastic.

(A) D + h

(B) D + 4h

(C) D + 8h

(D) D + 9h

(E) There is insufficient information.

Ans: D Extra: There is an extension of this to multiple balls in H3 physics
https://youtu.be/drVTrXib-7g?t=260

10.3 Center of Momentum Frame

https://youtu.be/Z28XlyN7WJ8

The Center of Momentum frame (CoM) is very useful because it simplifies the
momentum equation greatly. The CoM frame is defined to be the frame in
which the total momentum is zero. So, in any dimension,

mAuA,CM +mBuB,CM = mAvA,CM +mBvB,CM = 0 (81)

where the bolded quantities u emphasise that this is a vector equation. We can
show that such a frame exists by proof by construction

uA ≡ uCM + uA,CM (82)

uB ≡ uCM + uB,CM (83)

Define/Choose uCM =
mAuA +mBuB

mA +mB
(84)

mAuA,CM +mBuB,CM = mA(uA − uCM ) +mB(uB − uCM ) (85)

= mAuA +mBuB − (mA +mB)uCM (86)

= 0 (87)

Rearranging the zero total momentum equation (81) yields A’s velocities in
terms of B’s velocities

uA,CM = −mB

mA
uB,CM (88)

vA,CM = −mB

mA
vB,CM (89)

38

https://youtu.be/IVkbicUsFrg
https://youtu.be/drVTrXib-7g?t=260
https://youtu.be/Z28XlyN7WJ8


10.3.1 Elastic Collision in CoM Frame

Equations (88) and (89) can be substituted into the conservation of KE equation
to eliminate A’s initial and final velocities, leaving us with an equation purely
relating B’s initial and final velocities

1

2
mAu

2
A +

1

2
mBu

2
B =

1

2
mAv

2
A +

1

2
mBv

2
B (90)

⇒
(
m2

B

mA
+mB

)
u2
B,CM =

(
m2

B

mA
+mB

)
v2
B,CM (91)

⇒ u2
B,CM = v2

B,CM (92)

10.3.2 1D Elastic Collision Revisited using CoM Frame

https://youtu.be/gwpOOmzETX8

The CoM equations become

mAuA,CM +mBuB,CM = 0 (93)

mAvA,CM +mBvB,CM = 0 (94)

u2
B,CM = v2B,CM (95)

If B is to the right of A (and our axis is defined as rightward positive), then
uB,CM < 0 because B is moving left in the CM frame before the collision.
vB,CM > 0 because B is moving right in the CM frame after the collision.
Hence

u2
B,CM = v2B,CM (96)

⇒ vB,CM = −uB,CM (97)

vA,CM = −mB

mA
vB,CM (98)

=
mB

mA
uB,CM (99)

= −uA,CM (100)

Wow! What a remarkably neat result. In the CoM frame, the velocities simply
flip direction during the collision. Returning to the lab frame, we obtain

vA = uCM + vA,CM (101)

= uCM − uA,CM (102)

= uCM − (uA − uCM ) (103)

= 2uCM − uA (104)

= 2
mAuA +mBuB

mA +mB
− uA (105)

vA =
mA −mB

mA +mB
uA +

2mB

mA +mB
uB (106)

vB =
2mA

mA +mB
uA +

mB −mA

mA +mB
uB (107)
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which matches our 1D elastic collision result. Calculation wise, one might not
see the merits of CoM frame in 1D. But intuition wise, the fact that the velocities
just flip during the collision gives us the intuition that the balls are just hitting
an imaginary wall at the point of collision.

The real power of CoM frame comes in when we consider 2D or 3D collisions.
The intuition of the objects hitting a wall still holds true, but in 2D the wall is
slanted at an angle. We discuss more about this now.

10.4 2D Elastic Collisions

https://youtu.be/gLXGk68VLS8

In 2D elastic collisions, there are 4 unknowns vA,x, vA,y, vB,x, vB,y but only 3
equations from momentum and energy conservation.

mAuA,x +mBuB,x = mAvA,x +mBvB,x (108)

mAuA,y +mBuB,y = mAvA,y +mBvB,y (109)

1

2
mA(u

2
A,x + u2

A,y) +
1

2
mB(u

2
B,x + u2

B,y) =
1

2
mA(v

2
A,x + v2A,y) +

1

2
mB(v

2
B,x + v2B,y)

(110)

We need 4 equations, but the 4th equation cannot be determined from physics
alone. It is a parameter we need to put in by hand, and this parameter can be
any (non-trivial) relation between the velocities. An example would be the final
angle of velocity of A v⃗A

vA,y = vA,x tan θA (111)

but really any other constraint could do. Solving these 4 simultaneous equations
is possible but extremely tedious. Therefore, it will help alot to consider the
CoM frame. From the previous section, we derived the following result

u2
A,CM = v2

A,CM (112)

u2
B,CM = v2

B,CM (113)

uA,CM = −mB

mA
uB,CM (114)

vA,CM = −mB

mA
vB,CM (115)

In the CoM frame, both objects are bouncing off an imaginary common wall
elastically. Conservation of momentum and energy doesn’t dictate what the
angle of the wall is, we need to specify so by a parameter θ.

Extra: This extends to 3D as well! But this time the wall is a 2D plane, and
the normal vector of the wall is described by 2 angles θ, ϕ.
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10.4.1 SJPO 2017 General Round Q42: Max Deflection

https://youtu.be/1EJF4RLk6HE

A mass M , with initial speed V , collides elastically with a stationary mass
m = M/2. Find the maximum angle of deflection of the mass M .

(A) 180◦

(B) 120◦

(C) 30◦

(D) 0

(E) There is insufficient information to tell.

Ans: C

10.5 1D Inelastic Collisions

https://youtu.be/jTKJgZvFACY&t=195

Conservation of momentum still holds, but some energy is lost in the form of
heat and sound. Instead of having an equation from energy, we parameterize
the inelastic collision with coefficient of restitution 0 ≤ e ≤ 1, defined by
the ratio of the velocity of separation over the velocity of approach, which is
information that needs to be provided by the question. The 2 linear equations
are

mAuA +mBuB = mAvA +mBvB (116)

e(uA − uB) = −(vA − vB) (117)

Solving these 2 simultaneously gives us

vA =
emB(uB − uA) +mAuA +mBuB

mA +mB
(118)

vB =
emA(uA − uB) +mAuA +mBuB

mA +mB
(119)

One can see that substituting e = 1 recovers the result for elastic collision. In
fact, one can kind of see that these equations are even easier to memorize than
the elastic ones.

10.5.1 SJPO 2018 General Round Q14

https://youtu.be/jTKJgZvFACY

Two blocks move towards each other on a smooth table with the velocities as
shown. Block A has mass 5 kg and moves at 2 m/s to the right. Block B has
mass 2 kg and moves at 5 m/s to the left. The coefficient of restitution e is
the ratio of the final relative speed of separation to the initial relative speed of
approach of two colliding objects. Take rightwards as positive. If e = 0.5, what
is the velocity of block B after impact?
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(A) −2.5 m/s

(B) −1.0 m/s

(C) 0 m/s

(D) 1.0 m/s

(E) 2.5 m/s

Ans: E

10.6 1D Perfectly Inelastic

https://youtu.be/jTKJgZvFACY&t=195

Perfectly inelastic collisions are inelastic collisions where e = 0. This implies
that vA = vB , which physically means that the 2 bodies stick together after the
collision and effectively travel as one.

Maximum Kinetic Energy Loss occurs in inelastic collisions. One can see
this clearly in the CoM frame, where both objects collide with each other and
stop moving.

10.6.1 SJPO 2017 General Round Q49

https://youtu.be/8mBj4id8tok

A long, hard train collides with a small fly. Assume the mass of the fly is
negligible compared to the mass of the train. The train and the fly were initially
moving towards each other with the same magnitude of velocity. When they
collide, the train and fly stick to each other and finally travel with the same
velocity as each other. Which of the following statements is most true in relation
to the above?

(A) During the collision the velocity of the fly changes direction instanta-
neously to that of the train.

(B) During the collision the fly stops moving at some point in time since
the velocity changes in direction.

(C) Since the velocity of the fly must be zero at some time during the
collision and it is attached to the train, then the train also has zero velocity
at that time.

(D) After the collision the fly must have gained momentum from the train.

(E) The train must have exerted a large force on the fly due to its large
momentum. The force exerted on the fly is proportional to the momentum
of the train.

Ans: B
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10.6.2 SJPO 2016 General Round Q24

https://youtu.be/cgxYXfIOV_o

Case 1: A 80 kg skater with speed u slides towards stationary skater with mass
20 kg. They hold hands when they reach each other and continue as one.

Case 2: the 20 kg skater is moving and the 80 kg skater is stationary; the initial
kinetic energy of the systems in both cases are the same.

Assume friction is negligible. What is the ratio of the change in kinetic
energy (i.e the amount of energy converted to other forms) of the system in
case 1 to that in case 2? i.e. (case 1 : case 2)

(A) 4 : 1

(B) 2 : 1

(C) 1 : 1

(D) 1 : 2

(E) 1 : 4

Ans: E

10.7 2D Inelastic Collision

The geometric intuition is more or less the same for 2D elastic. The only
difference is that the final velocities will be scaled down.

10.8 Accounting for Rotation

So far the objects were assumed to be point masses, or solid bodies that only
move translationally. In reality we know objects can rotate before and after the
collision. Rotational dynamics is what we will cover now.
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11 Physics: Assorted Practice

11.0.1 SJPO 2014 General Round Q40

Two projectiles of same mass are fired from the ground and they land at the
same horizontal level. Ratio of their minimum kinetic energies is 4:1 and the
ratio of maximum heights attained by them is also 4:1. Find the ratio of their
horizontal ranges.

(A) 16 : 1

(B) 4 : 1

(C) 8 : 1

(D) 2 : 1

(E) None of the above

Ans: B

11.0.2 SJPO 2016 General Round Q1

A force is applied to a box to push it across the horizontal floor at a constant
speed of 4.0 m/s. Assume air resistance is negligible. What can you say about
the forces acting on the box?

(A) If the force applied to the box is doubled, the constant speed of the
box will double to 8.0 m/s.

(B) The magnitude of force applied to keep the box moving at a constant
speed must be more than the magnitude of its weight.

(C) The force being applied to the box to keep it moving at constant
speed makes an action-reaction pair with the frictional force that resists
its motion.

(D) The magnitude of force applied to keep the box moving at a constant
speed must be equal to the magnitude of the frictional forces that resist
its motion.

(E) The magnitude of force applied to keep the box moving at a constant
speed must overcome i.e. be more than the magnitude of the frictional
forces that resist its motion.

Ans: D
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11.0.3 SJPO 2016 General Round Q2

If the force applied to the box in the preceding problem is suddenly discontinued,
the box will

(A) stop suddenly.

(B) continue at a constant velocity.

(C) suddenly start slowing to a stop.

(D) increase its speed for a very short period of time, then start slowing
to a stop.

(E) continue at a constant speed for a very short period of time and then
slow to a stop.

Ans: C

11.0.4 SJPO 2016 General Round Q6

Carts A and B are initially at rest on a frictionless, horizontal surface. A
constant force F0 is applied to each cart as it travels from its initial position.
The mass of cartA is more than the mass of cartB. Consider the kinetic energy,
E, and momentum, p, of the boxes at position X, a distance x0 from the initial
position. Subscripts A, B denote cart A or B. Which statement below is correct?

(A) EA < EB , pA < pB

(B) EA < EB , pA = pB

(C) EA > EB , pA < pB

(D) EA = EB , pA = pB

(E) EA = EB , pA > pB

Ans: E
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11.0.5 SJPO 2016 General Round Q12

The upper end of a rope is fixed to a vertical wall. The upper end makes an
angle of 30 degrees with the wall when the lower end is pulled by a horizontal
force of 20 N. What is the mass of the rope?

(A) 1.8 kg

(B) 2.0 kg

(C) 2.4 kg

(D) 3.5 kg

(E) 4.1 kg

Ans: D

11.0.6 SJPO 2018 General Round Q11

The minimum time T for a car to safely overtake a long trailer is measured from
the time the front of the car is level with the rear of the trailer, until the rear
of the car is one full car-length ahead of the trailer. The car is 3.5 m long and
the trailer is 15.0 m long.

The graph shows the speed-time graphs of the car and the trailer. What is the
minimum time T ?

(A) 2.16 s

(B) 1.76 s

(C) 1.48 s

(D) 0.88 s

(E) 0.64 s

Ans: B
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11.0.7 SJPO 2018 General Round Q12

A wooden peg is to be pulled out of the
ground using two ropes A and B. Rope A is
subject to a force of 600 N at 60◦ to the hor-
izontal. Rope B is pulled at a fixed angle θ
to the vertical. If the resultant force acting
on the post is to be 1600 N vertically, what
should be the force T on rope B?

(A) 1121 N

(B) 1334 N

(C) 1400 N

(D) 1924 N

(E) 2040 N

Ans: A

11.0.8 SJPO 2018 General Round Q13

Travelling with an initial speed of 70 km/h, a car accelerates at 6000 km/h2

along a straight road. How long will it take to reach a speed of 120 km/h ?

(A) 30 s

(B) 45 s

(C) 60 s

(D) 70 s

(E) 180 s

Ans: A
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11.0.9 SJPO 2018 General Round Q18

A 2 kg block slides down a smooth roof which is angled at 30◦ to the horizontal.
When it reaches A, it has a speed of 2.0 m/s. It leaves the surface of the roof
at B and strikes the ground at a distance d from the wall of the building. What
is the distance d ?

(A) 3.96 m

(B) 8.66 m

(C) 8.78 m

(D) 17.3 m

(E) 17.8 m

Ans: C

12 Physics: Work and Impulse Topical Practice

Read section 6.2 for an explanation of Work and Impulse.

12.0.1 SJPO 2016 General Round Q5

https://youtu.be/BVb7U9s4s6s A train of mass 7.0× 104 kg expends 60 kW
of power to travel down a 2◦ incline at a constant velocity of 10 m s−1. How
much power is required for the same train to travel up the 2◦ incline at the same
constant velocity of 10 m s−1 ?

(A) 540 kW

(B) 480 kW

(C) 300 kW

(D) 240 kW

(E) 60 kW

Ans: A
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12.0.2 SJPO 2014 General Round Q42

A uniform chain of length L and mass m is lying on a smooth table. One
third of its length is hanging vertically down over the edge of the table and the
remaining two third is on the table. If g is the acceleration due to gravity, what
is the work W required to pull the hanging part onto the table?

(A) mgL

(B) mgL/3

(C) mgL/6

(D) mgL/9

(E) mgL/18

Ans: E
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13 Math: Differential Equations

When we studied F (t) = ma(t), we noted that as long as we know the function
F (t), we can find a(t) and integrate twice to obtain x(t). However, in most
systems, F (t) depends on x(t) or v(t) ≡ ẋ(t). Examples include

• Spring Mass F (x(t)) = −kx(t)

• Gravitation F (r⃗(t)) = −GMm
|r⃗(t)|2 r̂

• Drag F (v(t)) = 1
2ρv(t)

2CDA

• Lorentz Force F⃗ = q(E⃗ + v⃗ × B⃗)

In these scenarios, we can no longer simply ”integrate twice” since we hit a
circular dependency. To resolve this, we need to solve the ”differential equation”.
Differential equations are very common in physics. If you solve the Navier-Stokes
Differential Equation, you earn a million dollars.

13.1 What is a Differential Equation?

When we first learned the quadratic equation, we were looking for values of x
that satisfy

ax2 + bx+ c = 0

We can find 2 complex solutions to this algebraic equation

x =
−b−

√
b2 − 4ac

2a
or x =

−b+
√
b2 − 4ac

2a

In differential equations, we are looking for functions y(x) that satisfy (for
example)

dy

dx
= y

In this example, y(x) = ex works! Substitute it into the above to check that
LHS = RHS. In fact, one can check that any multiple of ex works too! So
y(x) = Aex for any arbitrary constant A is a solution. To determine A, we need
to know the ”initial condition” y(0) = A.

Let’s try another example, find the function y(x) that satisfies

dy

dx
= 5y

with initial condition dy
dx

∣∣∣
x=0

= 10

Solution: y(x) = 2e5x
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13.1.1 Physics: RC circuit

Find q(t) that satisfies the following (R,C are constants).

dq

dt
= − q

RC

with initial condition q(t = 0) = q0.
Answer: q(t) = q0 exp(−t/RC)

What if the initial condition was I(t = 0) := dq
dt

∣∣∣
t=0

= I0 instead?

Answer: q(t) = I0RC exp(−t/RC)

13.2 Simple Harmonic Motion ODE

In polynomial equations, the largest power xn is the degree n of the polynomial.
In differential equations, the highest derivative dny

dxn is the order of the differential
equation. In this section, we cover a very common class of 2nd order differential
equations

d2y

dx2
= −ω2y

which has solution
y(x) = A sin(ωx+ ϕ)

13.2.1 Derivation by Layman Arguments

sinx and cosx are the only (proof involves linear algebra) functions that when
differentiated twice, pick up a negative sign. We can afford to put a constant ϕ
in the parameter of sin, since constants vanish when differentiated.

13.2.2 Derivation using Complex Exponential

d2y

dx2
= Ay (120)

where −∞ < A < ∞ is a real constant.

Solution:
y = y0 exp(

√
Ax)

Question: What happens if A < 0?
Answer:

√
A is complex! To be more precise, if A = −ω2 for a positive real

number ω, then
y = y0 exp(±iωx)

are 2 valid solutions.
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A word on linear differential equation: Equation 120 is said to be linear,
because if I have 2 solutions f(x) and g(x), then adding them together or scaling
them is still a valid solution.

Given
d2f

dx2
= Af(x) (121)

And
d2g

dx2
= Ag(x) (122)

y(x) = f(x) + g(x) is a solution too (123)

Goal: Show
d2y

dx2
= Ay(x) (124)

Proof: LHS =
d2

dx2
[f(x) + g(x)] (125)

=
d2f

dx2
+

d2g

dx2
(126)

= Af(x) +Ag(x) (127)

= A[f(x) + g(x)] (128)

= RHS (129)

Examples of Linear Differential Equations:

• Simple Harmonic Motion

• RLC Circuits (linear components)

• (Linear) Wave Equation

• Schrodinger equation (Quantum Mechanics)

• Maxwell’s Equation (Electromagnetism)

Since
y+(x) = y0 exp(+iωx)

y−(x) = y0 exp(−iωx)

are 2 solutions to the linear DE

d2f

dx2
= Af(x)

any linear combination of them is a valid solution.

y(x) = C exp(+iωx) +D exp(−iωx)

where C,D are arbitrary complex constants.

But what is a complex exponential? Euler’s formula:

eiθ = cos θ + i sin θ
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Some say it’s just a mathematical trick, since ”our system doesn’t involve com-
plex numbers”. It gets philosophical. Richard Feynman famously said: ”Shut
up and calculate”.

So we want our solution y(x) to be real, i.e. Im [y(x)] = 0. So that necessitates
that C∗ = D and so the general solution is

y(x) = C exp(+iωx) + C∗ exp(−iωx) (130)

By Polar Form: C := |C| exp(iϕ) (131)

= |C|Re[exp(+i(ωx+ ϕ))] (132)

= |C| cos(ωx+ ϕ) (133)

which is the general solution we heuristically arrived at previously.

Extra: How do we know there are no other functions that solve the ODE? The
answer is we can factorise

(
d2

dx2 + ω2
)
=

(
d
dx − iω

) (
d
dx + iω

)
and calculate the

kernel of these 2 differential operators.

13.3 Separable ODE

A first order separable differential equation is one of the form

dy

dx
=

f(x)

g(y)

One can solve these type of equations in general by rearranging and integrating.

g(y) dy = f(x) dx (134)∫
g(y) dy =

∫
f(x) dx (135)

13.4 1st Order ODE

A 1st Order ODE takes the following general form

dy

dx
+ P (x)y = Q(x)

The solution is

y(x) =

∫ (
exp(

∫
P (x) dx)

)
Q(x) dx

exp(
∫
P (x) dx)

Derivation: We first multiply both sides by a specific function µ(x) called the
integrating factor, which we currently don’t know the expression for.

dy

dx
µ(x) + [µ(x)P (x)]y = µ(x)Q(x)
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The idea is that we want to make use of the product rule

d

dx
[y(x)f(x)] =

dy

dx
f(x) +

df

dx
y(x) (136)

which we compare with LHS
dy

dx
µ(x) + [µ(x)P (x)]y (137)

to rewrite the LHS as a total derivative. So we need to choose µ(x) to satisfy

µ(x) = f(x) (138)

µ(x)P (x) =
df

dx
(139)

This is separable, so it’s just

dµ(x)

dx
= µ(x)P (x) (140)

1

µ(x)
dµ(x) = P (x) dx (141)∫

1

µ(x)
dµ(x) =

∫
P (x) dx (142)

ln |µ(x)| =
∫

P (x) dx+ C (143)

µ(x) = ±eCe
∫
P (x) dx (144)

After that, we substitute µ(x) back into the ODE and integrate both sides to
solve for y(x)

d

dx
[y(x)µ(x)] = µ(x)Q(x) (145)

y(x)µ(x) =

∫
µ(x)Q(x) dx (146)

y(x) =

∫ (
exp(

∫
P (x) dx)

)
Q(x) dx

exp(
∫
P (x) dx)

(147)

Side Note: The constant of integration that appears in the integrating factor
exp(

∫
P (x) dx) will cancel out. This makes sense because scaling integrating

factor µ(x) by a constant µ(x) 7→ λµ(x), λ ∈ R shouldn’t affect the solution
y(x) since the integrating factor was not in the original ODE.

14 Physics: Simple Harmonic Motion (Part I)

There are a lot of ways Simple Harmonic Motion (SHM) can appear, but one
thing that is universal is that the equations of motion always simplify (usually
after some approximations) to the form

d2y

dt2
= −ω2y(t) (148)

y(t) = A sin(ωt+ ϕ) (149)
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where ω = 2π/T will turn out to be the angular frequency of the oscillation, T
being the period of oscillation.

Side note: The ϕ accounts for the cos solution by R-formula a sin θ + b cos θ =√
a2 + b2 sin(θ + arctan

(
b
a

)
)

14.1 Spring Mass

A mass m lies on a frictionless table, attached to an unstretched spring with
spring constant k. The other end of the spring is fixed to a wall. The mass is
displaced from it’s equilibrium position by x0 (in a direction perpendicular to
the wall) and released. Find the amplitude and period of oscillation.

Hooke’s Law: The restoring force F of a spring stretched by x is F⃗ (x) = −kx x̂.

Extra: Find the period of oscillation of a mass m hung vertically on a spring
with spring constant k in a gravitational field strength g.

14.2 Spring Mass (with a Push)

Same as the above, mass m on frictioness table attached to spring with spring
constant k displaced by x0. But this time, instead of a release, it is pushed,
giving the mass an initial speed v0 (toward the point of equilibrium). Find the
new amplitude of oscillation.

This question emphasizes the initial conditions of a differential equation.

Extra: What happens if the initial speed v0 was directed away from the point
of equilibrium instead? Why do we get the same answer for amplitude?

14.3 General Pattern for SHM Questions

I will compile all the SHM questions later on because SHM spans across all the
physics topics (from EM to buoyancy), but in general the pattern is just

1. Equations of Motion (EOM)

2. Solve for equilibrium

3. Taylor expand about equilibrium

4. Match with the SHM equation q̈(t) = −ω2q(t)

15 Math: Polar Coordinates (2D)

We previously described the location of a particle using 2 coordinates x(t), y(t).
When it comes to rotational questions, it’s often more convenient to describe
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location using polar coordinates r(t), θ(t). The conversion between the coordi-
nates are given by

r =
√
x2 + y2 (150)

θ = atan2(y, x) (151)

x = r cos θ (152)

y = r sin θ (153)

where atan2 is basically arctan(y/x) but sensitive to signs.

atan2(y, x) =



arctan
(
y
x

)
if x > 0

arctan
(
y
x

)
+ π if x < 0 and y ≥ 0

arctan
(
y
x

)
− π if x < 0 and y < 0

π
2 if x = 0 and y > 0

−π
2 if x = 0 and y < 0

undefined if x = 0 and y = 0

(154)

Side Note: If we used θ = arctan(y/x) instead, one might be worried it is un-
able to distinguish (x, y) and (−x,−y), since both result in the same numerical
value for θ. This is a valid mathematical concern. However, for most physics
calculations we won’t run into issues since we mainly deal with differential forms
ds2 = dr2 + r2dθ2 and vectors (which are secretly derivatives ∂/∂r, ∂/∂θ), both
of which are ”local objects”. Even though the definition uses atan2(y, x), when
performing calculations, we often pretend it is arctan(y/x) because it results
in the same formulas. The reason that it gives the same results is intuitive
from the definition (154), but to be mathematically rigorous, the proof will be
annoyingly lengthy.

15.1 Basis Vectors

Figure 1: Basis vectors for
polar coordinates

The basis vectors for polar coordinates are shown
in Figure 1. To understand why they are de-
fined as such, we should understand the motiva-
tion for defining basis vectors and vectors. The
motivation is to define velocity. The essence of
velocity is to know how an object’s coordinates
changes after a small amount of time. If a vec-
tor is v⃗ = 4êx + 3êy, it means that after a small
amount of time ∆t, the x coordinate changes by
4∆t, and the y coordinate changes by 3∆t. This
implies that the direction a basis vector (e.g. êx)
points, is by definition, the direction that the loca-
tion moves when the coordinate (e.g. x) changes.

For the cartesian coordinate system, the basis vectors are constant: they point
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in the same direction wherever we are in space. However, the basis vectors for
polar coordinates are not constant: they point in different directions depending
on where we are in space. This is consequential because it implies that the
derivative of the basis vectors are not zero, and this mathematical fact gives
rise to fictitious/inertial forces such as centrifugal and Coriolis force!

Enough talking, the expression for basis vectors

êr = cos θ êx + sin θ êy (155)

êθ = − sin θ êx + cos θ êy (156)

15.2 Velocity in Polar Coordinates

The velocity vector can be decomposed into the basis vectors as follows

v⃗ = ṙ êr + rθ̇ êθ (157)

Proof:

v⃗ =
dr⃗

dt
(158)

=
d

dt

(
x(t)
y(t)

)
(159)

=
d

dt

(
r(t) cos θ(t)
r(t) sin θ(t)

)
(160)

=

(
ṙ cos θ − r sin θ θ̇

ṙ sin θ + r cos θ θ̇

)
(161)

= ṙ

(
cos θ
sin θ

)
+ rθ̇

(
− sin θ
cos θ

)
(162)

v⃗ = ṙ êr + rθ̇ êθ (163)

There are other ways to prove the above, but the above is simplest.

15.2.1 SJPO 2015 General Round Q4

Gears A, B, C are aligned side by side in such a way that rotating gear A causes
gear B to rotate which in turn causes gear C to rotate. Gear A has 40 teeth and
is rotating at angular speed of 50rev/s. The radius of gear B is 20% of gear C
and gear C is rotating at 40% angular speed of gear A. All the gears have the
same tooth and groove size. How many teeth does gear B have?

(A) 10

(B) 20

(C) 40
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(D) 50

(E) 80

Ans: B

15.3 Acceleration in Polar Coordinates

Acceleration is the derivative of velocity (Eq 163) wrt time, which can be shown
to be equal to

a⃗ = (r̈ − rθ̇2) êr + (rθ̈ + 2ṙθ̇) êθ (164)

When we talk about rotating reference frames in future, the rθ̇2 term is
responsible for centrifugal force, and the 2ṙθ̇ term is responsible for Coriolis
force.

Proof: First we obtain the derivative of the polar basis vectors.

dêr
dt

=
d

dt

(
cos θ
sin θ

)
(165)

=

(
− sin θ θ̇

cos θ θ̇

)
(166)

= θ̇ êθ (167)

dêθ
dt

=
d

dt

(
− sin θ
cos θ

)
(168)

=

(
− cos θ θ̇

− sin θ θ̇

)
(169)

= −θ̇ êr (170)

Then we simply apply chain rule

a⃗ =
dv⃗

dt
(171)

=
d

dt
(ṙ êr + rθ̇ êθ) (172)

= r̈ êr + ṙ
dêr
dt

+ ṙθ̇ êθ + rθ̈ êθ + rθ̇
dêθ
dt

(173)

= (r̈ − rθ̇2) êr + (rθ̈ + 2ṙθ̇) êθ (174)
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16 Physics: Centripetal Force and Acceleration

Newton’s 2nd law is just

Fr êr + Fθ êθ = F⃗net = ma⃗ = m
[
(r̈ − rθ̇2) êr + (rθ̈ + 2ṙθ̇) êθ

]
(175)

⇒ Fr = m(r̈ − rθ̇2) (176)

and Fθ = m(rθ̈ + 2ṙθ̇) (177)

16.1 Centripetal Acceleration

https://youtu.be/_noiaP-pKmU

Often, the radial coordinate function r(t) is constant. Examples include: pen-
dulum, point mass sliding down hemisphere, planet in orbit, cup on rotating
Chinese table. When ṙ = 0, Newton’s 2nd law simplifies to

Fr = −mrθ̇2 (178)

Fθ = mrθ̈ (179)

16.1.1 SJPO 2015 General Round Q1

https://youtu.be/WG41FvYPYkQ

Two identical masses, A and B, are tied to strings and placed on a horizontal
frictionless disc as in the figure below. The two masses are then set to move
about the centre of the disc with the same angular velocity ω. Given that the
tension of the string connecting mass A to the center of the disc is T , determine
the tension of the string connecting mass B to mass A.

(A) T/4

(B) 3T/4

(C) T

(D) 3T

(E) 4T

Ans: B

16.1.2 SJPO 2018 General Round Q7

https://youtu.be/V-DVhjbQa5o

A bug is just about to slip on a circular turntable of radius R rotating at constant
angular velocity. The bug is halfway between the centre and the edge and the
coefficient of static friction is 1/4. What is the acceleration of the bug?
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(A) 3g

(B) 2g

(C) 3g/2

(D) g/2

(E) g/4

Ans: E

16.1.3 SJPO 2016 General Round Q14 & Q15

https://youtu.be/VI1WY_f8QL0

Q14: A ball with mass m is hung from the ceiling with a massless string of
length l as shown in the diagram. It moves in uniform circular motion with
angular velocity ω. What is the magnitude of tension in the string?

(A) mω2l

(B) mω2l cos θ

(C) mω2l/ cos θ

(D) mω2l sin θ

(E) mω2l/ sin θ

Ans: A

Q15: https://youtu.be/j_T73abVdBs
For the same situation as in the above question, with m = 0.20 kg, l = 0.80 m.
What is the angular velocity in order for the string to maintain a constant angle
of θ = 25◦ to the vertical?

(A) 0.59rads−1

(B) 1.2rads−1

(C) 3.5rads−1

(D) 3.7rads−1

(E) 5.4rads−1

Ans: D
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16.1.4 SJPO 2016 General Round Q17

https://youtu.be/-UeWL4MssRA

A 360 kg roller coaster car is initially at rest at a height of 120 m above the
ground. It goes to the ground and does a circular loop of radius r. Assume that
friction and energy losses are negligible, the car is small and is not attached to
the track. What is the maximum radius r so that the roller coaster does not
leave the track?

(A) 120 m

(B) 60 m

(C) 48 m

(D) 42 m

(E) 36 m

Ans: C

16.2 Example: Pendulum

A mass m is hung by an inextensible string of length l in a gravitational field
strength g. It is displaced by a small angular displacement θ0 and released.
Find the amplitude and period of oscillation.

Ans:
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16.2.1 SJPO 2015 General Round Q16

As shown in the diagram, a pendulum of length L is hung from the ceiling and
at a point P , a peg is placed. L′ denotes the shortened length of the pendu-
lum during part of its oscillation. The period of the pendulums oscillation is now

(A) 2π
√

L
g

(B) 2π
√

L′

g

(C) 2π
[√

L
g +

√
L′

g

]
(D) π

[√
L
g +

√
L′

g

]
(E) π

√
L+L′

g

Ans: D

16.2.2 SJPO 2018 General Round Q21

The bob of a simple pendulum travels 2 m in one complete oscillation in a time
of 2.000 s. Assuming that damping is negligible, when the same pendulum is
made to travel 4 m in one complete oscillation, the time taken is

(A) 4.000 s

(B) More than 2.000 s

(C) 2.000 s

(D) Less than 2.000 s

(E) 1.000 s

Ans: B
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17 Physics: Rotational Dynamics

17.1 SUVAT for Rotational Kinematics

We know that for 1D kinematics

a =
dv

dt
=

d2s

dt2
(180)

leads to the SUVAT rules

v(t) = u+ at (181)

s(t) = ut+
1

2
at2 (182)

v(s)2 = u2 + 2as (183)

s(t) =
v(t) + u

2
t (184)

s(t) = v(t)t− 1

2
at2 (185)

It hence comes as no surprise that since

α =
dω

dt
=

d2θ

dt2
(186)

we have analogous ”SUVAT” rules for rotational motion

ω(t) = ω0 + αt (187)

θ(t) = ω0t+
1

2
αt2 (188)

ω(θ)2 = ω2
0 + 2αθ (189)

θ(t) =
ω(t) + ω0

2
t (190)

θ(t) = ω(t)t− 1

2
αt2 (191)

That’s cool! But what about dynamics? What is mass, force, momentum,
kinetic energy, analogous to?

We will now show that the analogy is as follows

Translational Rotational

Mass m Moment of Inertia I
Force F Torque τ

Momentum mv Angular Momentum Iω
Kinetic Energy 1

2mv2 Kinetic Energy 1
2Iω

2
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17.2 Moment of Inertia

So far we have been dealing with point masses. But in reality most objects take
up some volume.

Before we talk about continuous mass distributions, let’s derive everything us-
ing discrete masses first.

One mass m at radius r:

Suppose there is a mass m distance r away from the origin, rotating about an
axis passing through the origin with angular velocity ω.

Qn: What is its magnitude of the velocity?
Ans: The magnitude of the velocity of the mass is |v⃗| = rω.

Qn: What is the direction of the velocity?
Ans: Tangential to the imaginary circle of radius r.

Qn: What is its kinetic energy (KE)?
Ans: The KE is 1

2m|v⃗|2 = 1
2 (mr2)ω2.

We expressed KE in the form of 1
2Iω

2 because this form generalises to other
mass distributions.

Two masses m/2 at same radius r:

Suppose we split the m into half, and put the 2 masses (each of mass m/2) at
coordinates (0, r) and (0,−r). They rotate about the origin at angular velocity
ω.

Qn: What are their velocities?
Ans: Both velocities’ magnitudes are |v⃗1| = |v⃗2| = rω. Both velocities’ direc-
tions are tangent to the circle of radius r, but point in opposite directions.

Qn: What is the total KE?
Ans: The total KE is

1

2

(m
2

)
|v⃗1|2 +

1

2

(m
2

)
|v⃗2|2 =

1

2

[(m
2

)
r2 +

(m
2

)
r2
]
ω2

Two masses m/2 at different radii r, 2r:

Suppose we have two masses, each of mass m/2. We place them at coordinates
(0, r) and (0, 2r). They rotate about the origin at angular velocity ω.

Qn: What are their velocities?
Ans: For the mass at (0, r), the velocity is |v⃗1| = rω in the leftward direction.
For the mass at (0, 2r), the velocity is |v⃗2| = 2rω in the leftward direction.

Qn: What is the total KE?
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Ans: The total KE is

1

2

(m
2

)
|v⃗1|2 +

1

2

(m
2

)
|v⃗2|2 =

1

2

[(m
2

)
r2 +

(m
2

)
(2r)2

]
ω2

General Collection of Discrete Masses:

For a general collection of masses {m1,m2, ...} located at distances {r1, r2, ...}
from the origin, as long as they are rotating about the origin with the same
angular velocity ω. We can ”pre-calculate” the quantity

I =
∑
i

mir
2
i (192)

and use this quantity in the calculation of kinetic energy

K.E. =
1

2
Iω2

We call I the Moment of Inertia. It is used all over rotational physics,
such as in the calculation of angular momentum, precession (gyroscopes). It is
analogous to mass in translational dynamics (we will see this soon).

General Mass Distribution:

Physicists model rigid body objects as a uniform mass density over some
volume. It is made up of many small masses dm = ρdV , where dm is called
an infinitesimal mass element and dV = dx dy dz is an infinitesimal volume
element. If we integral dm over volume V the object occupies, we get the mass∫

V
dm = m (193)

To find I for a general mass distribution, we turn the sum into an integral in
Equation 192. So we have

I =

∫
V
r2dm (194)

where r is the distance of the infinitesimal mass dm from the axis of rota-
tion.
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Figure 2: Source: Hyperphysics

Listed above is a list of moment of inertia of common objects. Calculating them
involves 2D integrals, which we postpone to a future chapter.

17.2.1 SJPO 2018 General Round Q9

The moment of inertia of a solid sphere of mass M and radius a, about an axis
passing through its centre, is (2/5)Ma2. The mass of a solid uniform octant
(one-eighth) of a sphere of radius a, is m. The moment of inertia about an axis
along one of the straight edges (e.g. z axis) is

(A) 4
3ma2

(B) 2
5ma2

(C) 3
8ma2

(D) 1
8ma2

(E) 1
20ma2

Ans: B
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17.3 Angular Momentum and Torque (in 3D)

Angular momentum L⃗(t) of a point particle at r⃗(t) with momentum p⃗(t) about
the origin is defined as

L⃗(t) ≡ r⃗(t)× p⃗ (195)

Similar to how F⃗ = dp⃗/dt, if we differentiate L⃗ wrt time, we arrive at the
definition for torque τ⃗

τ⃗(t) ≡ dL⃗

dt
(196)

= r⃗ × dp⃗

dt
+

dr⃗

dt
× p⃗ (197)

= r⃗ × F⃗ + v⃗ × p⃗ (198)

= r⃗ × F⃗ (199)

(200)

Extra: The definition of angular momentum can be motivated from Lagrangian
mechanics as a conserved quantity from rotational invariance.

17.3.1 Conceptual Emphasis

I want to re-emphasise on some important conceptual points:

• Angular velocity ω(t) = dθ/dt is a scalar. It is defined about an axis of
rotation êrot.

• Torque τ⃗ = r⃗ × F⃗ is a vector.
Its value depends on our choice of origin (which affects the value of r⃗).

• Angular momentum L⃗ = r⃗ × p⃗ is a vector.
Its value depends on our choice of origin (which affects the value of r⃗).

Extra: Sometimes (mostly used in 3D) we package ω & erot into a single angular
velocity vector ω⃗ = ωêrot, which makes it a vector.

Extra: If the axis of rotation changing over time (such as a wheel), one can
consider the instantaneous axis of rotation https://en.wikipedia.org/wiki/

Instant_centre_of_rotation.

17.3.2 Angular Momentum in terms of I

For a point particle at (r, 0, 0) rotating about z-axis with angular velocity ω,

Lz = rp (201)

= rmv (202)

= rmωr (203)

= mr2ω (204)
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In general, for a rigid body that is rotating about one of its principal axis
of rotation (an advanced concept you don’t need to worry about now) with
angular velocity ω⃗, it’s angular momentum is

L⃗ = Iω⃗ (205)

where I (a scalar) is the moment of inertia about that axis of rotation.

Extra: If the rigid body is not rotating about a principal axis of rotation,
then L⃗ = Iω⃗ where I is the inertia tensor https://en.wikipedia.org/wiki/
Moment_of_inertia#Inertia_tensor
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17.4 Angular Momentum and Torque (in 2D)

The exact ”vector nature” of L⃗, τ⃗ , ω⃗ is quite complicated and will be discussed in
future. For now we are mostly concerned with the magnitude of L⃗. Specifically,
for the following section, we will only consider scenarios where torque is parallel
to angular momentum, so the direction of angular momentum remains constant.
So we use the same symbols without the arrow above to denote the magnitude.

L ≡ |L⃗| (206)

ω ≡ |ω⃗| (207)

τ ≡ |τ⃗ | (208)

In other words, for now you can forget the vector nature of these quantities and
just work with the following

L = Iω (209)

τ = rF sin θrF =
dL

dt
= Iα (210)

I can be obtained from the list of MOIs (211)

17.4.1 Using r⊥F vs rF⊥

There are 2 ways to visualise τ = rF sin θrF

Projecting the origin O onto the line of ac-
tion of the force, r⊥ is the shortest distance
from O to the line of action.

|τ⃗ | = |r⃗ × F⃗ |
= |rF sin θrF |
= r⊥F

Projecting the tip of the force vector onto the
extended r⃗ vector (aka ”OR produced”), F⊥
is the shortest distance from the tip to OR
produced.

|τ⃗ | = |r⃗ × F⃗ |
= |rF sin θrF |
= rF⊥

69



17.4.2 Physical Intuition

Intuition for torque causing angular momentum to change in 2D:

• If force is at θrF = 90◦, maximal torque in theCCW direction (L⃗ pointing
out of the page).

• If force is at θrF = 0◦, no torque. More on this in 17.5.

• If force is at θrF = −90◦, maximal torque in theCW direction (L⃗ pointing
into the page).

• Momentum p⃗ vs angular momentum Lz. Example: uniform circular mo-
tion of 1 and 2 particles in the x-y plane.

Intuition for angular momentum in 2D:

• Spinning ice skater https://youtu.be/FmnkQ2ytlO8

• Guy spinning on chair https://youtu.be/M6PuutIm5h4

17.4.3 Example: Oscillation of General Object

Qn: If you pin a laminar with moment of inertia I such that it can freely rotate
about its pivot, and the center of mass is distance L away from the pivot, show
that the angular frequency of oscillations is given by

ω =

√
mgL

I

17.4.4 SJPO 2016 General Round Q16

The diagram below shows 3 pendulums of length L. The first uses a point mass
m suspended from a string of length L; the second uses a sphere with radius
R and mass m suspended such that the centre of mass of the sphere is length
L away from the pivot point; the last uses a rigid rod of length L and mass m
pivoted at its end. Which of the following statements correctly describes the
periods of these 3 pendulums?
Hint: Moment of inertia of the 3 setups are I2 > I1 > I3

(A) Period of 1 = 2 > 3

(B) Period of 2 > 1 > 3

(C) Period of 2 > 3 > 1

(D) Period of 3 > 1 > 2

(E) Period of 3 > 2 > 1

Ans: B
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17.4.5 Qn: Taylor Example 3.3

A uniform circular turntable (mass M , radius R, center O) is at rest in the x-y
plane and is mounted on a frictionless axle, which lies along the vertical z axis. I
throw a lump of putty (mass m) with speed v toward the edge of the turntable,
so it approaches along a line that passes within a distance b of O, as shown in
Figure 17.4.5. When the putty hits the turntable, it sticks to the edge, and the
two rotate together with angular velocity ω. Find ω.

Figure 3: A lump of putty of mass m is thrown
with velocity v at a stationary turntable. The
putty’s line of approach passes within the dis-
tance b of the table’s center O.

Ans: ω = m
m+M/2

vb
R2

Extra: Can we use conservation of momentum? Why not?

17.5 Central Forces Conserve Angular Momentum

17.5.1 2D Explanation

Looking at τ = rF sin θrF , we see that if the applied force is pointing to or
away from the origin, then it doesn’t cause any increased rotation (intuition).
Mathematically, θrF = 0◦ or 180◦. For better intuition, consider a ball on a
string going in constant-radius circular motion on a frictionless x-y plane. The
ball maintains it’s angular velocity.

17.5.2 3D/Vector Explanation

Torque τ⃗ = r⃗ × F⃗ is the cross product between position r⃗ and force F⃗ . If
the force is parallel or anti-parallel to the position (pointing away or towards
the origin), then torque is zero, since τ⃗ = r⃗ × kr⃗ = 0⃗. This means angular

momentum is conserved, since dL⃗/dt = τ⃗ = 0⃗.
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17.5.3 Qn: Taylor Problem 3.25

A particle of mass m is moving on a frictionless horizontal table and is attached
to a massless string, whose other end passes through a hole in the table, where
I am holding it. Initially the particle is moving in a circle of radius r0 with
angular velocity ω0, but I now slowly pull the string down through the hole
until a length r remains between the hole and the particle. What is the particle’s
angular velocity now?

Ans: ω = ω0(r0/r)
2

Extra: Does the kinetic energy increase? Does work energy theorem apply?

17.6 Rotational Kinetic Energy

As motivated previously, the kinetic energy of an object with angular velocity
ω (about some axis of rotation) and moment of inertia I (about the same axis
of rotation) is

K.E. =
1

2
Iω2

17.6.1 Qn: Morin Problem 8.26 (Swinging stick)

A uniform stick of length L is pivoted at its bottom end and is initially held
vertical. It is given an infinitesimal kick, and it swings down around the
pivot. After three-quarters of a turn (in the horizontal position shown in Fig-
ure 17.6.1), the pivot is somehow vaporized, and the stick flies freely up in the
air. What is the angular velocity of the stock when the pivot is vaporized?

Ans: ω =
√
3g/L

Extra Qn: What is the maximum height of the center
of the stick in the resulting motion? At what angle is
the stick tilted when the center reaches this maximum
height?

Ans: 3L/8, 1.5 rad
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18 Physics: Statics

Now that we have covered friction, normal contact force, and tension (Section
8) and Torque (Section 17.4), we can now learn some olympiad tricks to solve
statics questions!

We know already that in static equilibrium (nothing moving rotationally and
translationally), net torque and net force must be 0. In general it’s possible to
write out all the equations. But sometimes we can use shortcuts.

18.1 Balancing Translational Forces

Translationally, net force must be zero. i.e.∑
i

Fi,x =
∑
i

Fi,y =
∑
i

Fi,z = 0

It will be useful to know how to solve simultaneous linear equations of 3 variables
in your scientific calculator.

Extra: Or know how to take the inverse of a 3x3 matrix in your graphing
calculator.

18.1.1 Qns from previous sections

Revise the following questions

• SJPO 2015 Q12 (Section 8.2.1)

• SJPO 2018 Q6 (Section 8.3.2)

• SJPO 2018 Q12 (Section 11.0.7)
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18.1.2 Qn: Engineering Statics Example 3.5.3 (Balloon)

The following 4 forces A⃗, B⃗, C⃗, D⃗ balance out (i.e. A⃗+ B⃗ + C⃗ + D⃗ = 0⃗). Given

that D⃗ = 900 ŷ, gridlines are 1 m spacing, and the point has height 3 m, find
|A⃗|, |B⃗|, |C⃗|.

Ans:

|A⃗| = 463.57

|B⃗| = 402.04

|C⃗| = 309.05
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18.1.3 Qn: Engineering Statics Example 3.5.4 (Skycam)

A skycam with weight of W⃗ is supported by tension in 3 cables A⃗, B⃗, C⃗ as
shown in Figure 18.1.3. Given that the mass of the skycam is 20 kg, what is
the magnitude of the tension in each of the 3 cables?

Ans:

|A⃗| = 196.4 N

|B⃗| = 192.2 N

|C⃗| = 98.5 N
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18.2 Balancing Torque

In order for rotational static equilibrium, net torque needs to be zero. i.e.∑
i

τi,x =
∑
i

τi,y =
∑
i

τi,z = 0

Note: In physics olympiad, usually it suffices to consider torque in 2D.

Recall that torque is always defined about an origin (of your choice). Your
choice of origin will make a big difference in your quality of life when solving
statics questions.

18.2.1 Example: Lever

76



18.2.2 (JUICY) Example: Hinged Shelf

A shelf of mass m is attached to the wall with a hinge at P such that it can
rotate freely about P but not translate. The right end is held up by a string
with tension T at angle θ.

(a) By considering torque about P , express T in terms of m, g, θ

(b) By considering torque about the center of mass and horizontal forces, ex-
press Fcarry and N in terms of T, θ.

Ans:
(a) T = mg

2 sin θ
(b) Fcarry = T sin θ, N = T cos θ

Comment: This question teaches
you that you can ”eliminate” certain
terms in your equation by choosing
your axis to calculate torque wisely.
Imagine if you knew T but didn’t
know mg, or you knew mg but didn’t
know T . Using this trick saves time
and cuts down the algebra.
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18.3 3 Concurrent Forces: Intersection of 3 Lines

Theorem: If an object is in static equilibrium (rotational and translational),
and there are only 3 forces acting on it, then the 3 forces are concurrent
(intersect at the same point).

Proof : Consider the intersection C of any 2 out of the 3 forces. By considering
torque about C, the 2 forces exert no torque. To be in static equilibrium (no
net torque), the 3rd force must also exert no torque. By line of action, the 3rd
force must be concurrent (intersect at the same point).

18.3.1 (JUICY) Example: Hinged Shelf (cont’d)

A shelf of mass m is attached to the wall with a hinge at P such that it can
rotate freely about P but not translate. The right end is held up by a string
with tension T at angle θ.

(c) Find |Fcarry|/|N | in terms of θ.

Ans: |Fcarry|/|N | = tan θ
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18.3.2 (JUICY) Example: Morin Chap 2.2 (Leaning ladder)

A ladder leans against a frictionless wall. If the coefficient of friction with the
ground is µ, what is the smallest angle the ladder can make with the ground
and not slip?

Ans: tan θ ≤ 1
2µ
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19 Physics: Electrostatics (Point Charges)

Every object has some amount of charge. ”Electro” refers to the interaction of
charges, ”statics” mean that we are dealing with situations where the objects
are not moving (in contrast with ”dynamics”). In this section, we will talk about
point charges, which are 0-dimensional objects that are precisely located at one
point in space. This is an idealisation, and in the real world point charges don’t
exist. However, in most scenarios, one can prove that this idealisation will be
”good enough”, such the results we get from assuming our charges are point-like
objects will coincide with the results we get if we had relaxed the assumption.
Wherever applicable, we like to assume point charges because it makes the math
easier.

19.1 Electric Force

If 2 point charges Q and q are separated by distance r, they exert (equal and
opposite) forces on each other with magnitude

|F⃗Q on q| = |F⃗q on Q| =
k |Q| |q|

r2
(212)

where k = 1
4πϵ0

is called Coulomb’s constant. ϵ0 = 8.85 × 10−12 Fm−1 is the
permittivity of vacuum. The unit F is Farad.

The direction of the force depends on the relative sign of the 2 charges. If they
are of the same sign (both positive or both negative), the direction of the force is
radially outward (the force pushes the 2 charges away i.e. like charges repel).
If they are of opposite sign (one negative and the other positive), the direction
of the force is radially inward (the force pulls the 2 charges together i.e. unlike
charges attract). We can summarise this in a single vector equation.

−F⃗q on Q = F⃗Q on q =
kQq

r2
r̂ (213)

where r̂ is the unit vector pointing from Q to q.

19.1.1 Principle of Superposition (Force)

Note: The word superposition is used a lot all over physics to mean different
things. It generally refers to the linearity of a system.

If there are N point charges {Q1, Q2, ..., QN} (excluding our test charge), then
the net force experienced by a test charge q is just the sum of forces each charge
individually exerts on it.

F⃗net on q =

N∑
i=1

F⃗Qi on q (214)

The proof of this is due to linearity of electric field (covered later). It is also
verified experimentally.
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19.2 Electric Potential Energy (EPE)

We won’t be able to do the definition of EPE justice without mentioning line
integrals, which we cover very soon. But for now, we take the following as fact.

If 2 point charges Q and q are separated by distance r, the electric potential
energy stored in this configuration is given by

U =
kQq

r
(215)

Notice how EPE U varies with respect to distance between the charges r.

• For like charges (Qq > 0), if the separation r increases, the potential
energy U decreases.

• For unlike charges (Qq < 0), if the separation r increases, the potential
energy U increases.

Although we haven’t talked about potential energy (and we can’t until we talk
about line integrals), there is a simple intuition I’d like to emphasise.

Intuition: Nature generally seeks configurations that have lower potential
energy (think of a ball on a hill). So for like charges, since potential energy de-
creases with increasing separation, like charges naturally seek to increase
their separation, i.e. like charges repel. Likewise, for unlike charges, since po-
tential energy decreases with decreasing separation, unlike charges naturally
seek to decrease their separation, i.e. unlike charges attract.

19.2.1 Principle of Superposition (EPE)

The total potential energy of the system of N charges {Q1, Q2, ..., QN} is the
pairwise sum of potential energies.

Utotal =
∑

1≤i<j≤N

Ui,j =
∑

1≤i<j≤N

kQiQj

rij
(216)

This can be proved by constructing the configuration of charges one charge at
a time.

19.3 Electric Field (from Electric Force)

Note: At the moment, it seems almost redundant to define the electric field and
potential. But from a theoretical point of view, the electric field and potential
are actually more fundamental objects. The electric force and EPE are typically
introduced first in most introductory courses/textbooks because they build on
the student’s pre-existing intuition for force and potential energy. The concep-
tual differences will become significant once we allow the charges to move, which
we will study in Electrodynamics.
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A point charge has a charge Q and is located at a point in space r⃗Q induces an
electric field spanning all of space

E⃗(r⃗) =
kQ

|r⃗ − r⃗Q|3
(r⃗ − r⃗Q) (217)

I chose to put let the point charge be anywhere in space, but in most definitions
you’ll see the point charge placed at the origin r⃗Q = 0⃗, simplifying the electric
field to

E⃗(r⃗) =
kQ

|r⃗|2
r̂ (218)

where r̂ is a unit vector, pointing in the same direction as r⃗ but with length of
1.

19.3.1 Principle of Superposition (Field)

If there are N point charges {Q1, Q2, ..., QN}, then the electric field due to
all these charges will be the vector sum of the electric field created by each
individual charge.

E⃗total(r⃗) =

N∑
i=1

E⃗due to Qi
(r⃗) (219)

This is due to linearity of Gauss’ law (one of the 4 Maxwell equations). It is
also verified experimentally.

19.3.2 Force Per Unit Charge

Electric Field is defined as the force per unit charge experienced by a test
charge. In other words, if I put a test charge q at a point r⃗q, it would experience
force

F⃗on q = qE⃗(r⃗q) (220)

It is often said that the test charge must be infinitesimally small, and the
reason is that if it wasn’t small, the test charge would exert a non-negligible
force on the configuration of N point charges, causing their positions to shift
and changing the entire electric field.

Even though the charge being infinitesimally small would result in the electric
force on the test charge being infinitesimally small in magnitude as well, the
ratio of F⃗ /q = E⃗ will stay constant no matter how small q is. This is akin to
taking the derivative of a function f ′(x) = limh→0[f(x+h)− f(x)]/h from first
principles.
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19.3.3 Cartesian Coordinates

Lastly, I would like to write down the electric field in Cartesian coordinates and
basis vectors, as an example of how to perform calculations using the above
definition.

r⃗ =

 x
y
z

 (221)

r̂ =
r⃗

|r⃗|
=

1√
x2 + y2 + z2

 x
y
z

 (222)

E⃗(x, y, z) =
kQ

x2 + y2 + z2
1√

x2 + y2 + z2

 x
y
z

 (223)

=
kQ

(x2 + y2 + z2)3/2

 x
y
z

 (224)

19.4 Electric Potential (from EPE)

Similar to the electric field, the existence of an electric charge with charge Q at
position r⃗Q will cause an electric potential to permeate all of space

ϕ(r⃗) =
kQ

|r⃗ − r⃗Q|
(225)

Note: The electric potential ϕ(r⃗) is a scalar field, as opposed to the electric field
which is a vector field.

And if r⃗Q = 0⃗ then

ϕ(r⃗) =
kQ

|r⃗|
(226)

19.4.1 Potential Energy Per Unit Charge

Similarly to the electric field, the electric potential is the potential energy per
unit charge. If I put a test charge q at position r⃗q, the increase in potential
energy of the configuration of charges will be

Uincrease due to q = qϕ(r⃗q) (227)

If the test charge q is now added permanently to the configuration, then the
electric potential will include it’s contribution too (according to superposition
principle).
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19.4.2 Principle of Superposition (Potential)

The total electric potential due to a collection of N charges {Q1, Q2, ..., QN}
will be the sum of the potentials due to each individual charge

ϕtotal(r⃗) =

N∑
i=1

ϕdue to Qi
(r⃗) (228)

19.4.3 Cartesian Coordinates

Once again, I think it would be pedagogical if I write it out in Cartesian coor-
dinates

r⃗ =

 x
y
z

 (229)

ϕ(r⃗) =
kQ√

x2 + y2 + z2
(230)

19.5 Exercises

19.5.1 SJPO 2016 General Round Q33

4 point charges are arranged at the corners of a square of side length d. The
charges are as indicated on the diagram. What is the electric potential V and
the magnitude of the electrostatic force F felt by a point charge of -1 e placed
at the centre of the square?

(A) V = 0, F = 1√
2

(
e2

πε0d2

)
(B) V = 0, F = e2

πε0d2

(C) V = 0, F = 0

(D) V = 1√
2

(
e

πε0d

)
, F = 0

(E) V = 1√
2

(
e

πε0d

)
, F = 1√

2

(
e2

πε0d2

)
Ans: A
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20 Math: Integration Techniques

We introduce examples by techniques first. At the end we will summarise the
different examples by their occurrence in physics, highlighting their similarities.

20.1 Just Memorise

For some integrals you just have to memorise the trick. For example∫
secx dx = ln | secx+ tanx|+ C (231)∫
sec2 x dx = tanx+ C (232)

20.2 Integration by Parts

If we consider the product rule

d

dx
(UV ) =

dU

dx
V + U

dV

dx
(233)

Integrating both sides wrt dx from x = a to x = b, and rearranging,∫ b

a

UdV = [UV ]ba −
∫ b

a

V dU (234)∫ b

a

g fdx =

[
g

(∫
fdx

)]b
a

−
∫ b

a

[(∫
fdx

)
dg

dx

]
dx (235)

My mnemonic is ”integrate, keep, minus, integral of, integrate differentiate”.

You can use the following 2 expressions to remember integral by parts. The
former one being a definite integral, the latter being an indefinite integral. Do

note that in both expressions,

(∫
f dx

)
does not include +C.

∫ b

a

fg dx =

[(∫
f dx

)
︸ ︷︷ ︸

integrate

g︸︷︷︸
keep

]b

a

−
∫ b

a

dx︸ ︷︷ ︸
integral of

[(∫
f dx

)
︸ ︷︷ ︸

integrate

dg

dx︸︷︷︸
differentiate

]
(236)

∫
fg dx =

[(∫
f dx

)
︸ ︷︷ ︸

integrate

g︸︷︷︸
keep

]
−

∫
dx︸ ︷︷ ︸

integral of

[(∫
f dx

)
︸ ︷︷ ︸

integrate

dg

dx︸︷︷︸
differentiate

]
+ C (237)

It is best to just do a few exercises to find your personal mnenomic and stick
to it.
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20.2.1 Exercises

Show the following ∫
lnx dx = x lnx− x+ C (238)∫

x lnx dx =
x2

2
lnx− x2

4
+ C (239)

20.2.2 Physics Examples

The following requires you to integrate by part twice and rearrange.
Source: https://youtu.be/DoK5ZSGJNwE?t=485

Show that

∫ π
2

0

T0e
µθ(µ sin θ + cos θ)dθ = T0e

µπ
2 (240)

20.3 U-Substitution

20.3.1 1/r integrals (potentials)

∫ b

−b

dx√
x2 + a2

(241)

Sub x = a tan θ, dx = a sec2 θ dθ (242)

∫ θ=tan−1( b
a )

θ=tan−1(− b
a )

a sec2 θ dθ√
a2 tan2 θ + a2

=

∫ tan−1( b
a )

− tan−1( b
a )

| sec θ| dθ (243)

=

∫ α

−α

sec θ dθ where α := tan−1(b/a)

= ln

∣∣∣∣ secα+ tanα

secα− tanα

∣∣∣∣ (244)

= ln

∣∣∣∣∣ sec
(
tan−1(b/a)

)
+ tan

(
tan−1(b/a)

)
sec

(
tan−1(b/a)

)
− tan

(
tan−1(b/a)

) ∣∣∣∣∣
= ln

∣∣∣∣∣∣
√

1 +
(
b
a

)2
+ b

a√
1 +

(
b
a

)2 − b
a

∣∣∣∣∣∣
= 2 ln

√
1 +

(
b

a

)2

+
b

a

 (245)
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20.3.2 1/r2 integrals

∫ b

−b

dx

x2 + a2
(246)

Sub x = a tan θ, dx = a sec2 θ dθ (247)

∫ θ=tan−1( b
a )

θ=tan−1(− b
a )

a sec2 θ dθ

a2 tan2 θ + a2
=

1

a

∫ tan−1( b
a )

− tan−1( b
a )

dθ (248)

=
2

a
tan−1

(
b

a

)
(249)

20.3.3 1/r3 integrals (fields)

∫ b

−b

dx
√
x2 + a2

3 (250)

Sub x = a tan θ, dx = a sec2 θ dθ (251)

∫ θ=tan−1( b
a )

θ=tan−1(− b
a )

a sec2 θ dθ
√
a2 tan2 θ + a2

3 =
1

a2

∫ tan−1( b
a )

− tan−1( b
a )

cos θ dθ (252)

=
1

a2

∫ α

−α

cos θ dθ (253)

=
2

a2
sinα (254)

=
2

a2
sin

(
tan−1

(
b

a

))
(255)

=
2

a2
b√

a2 + b2
(256)
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20.3.4 Geometrical Interpretation

Draw a picture in lesson for the limits of integration.

Figure 4: U-substitution is a reparametrization of curve

Figure 5: dx = a sec2 θ dθ in greater detail

88



21 Math: Line Integrals

Let’s begin by first mentioning a few examples of line integrals.

Work Done =

∫
γ

F⃗ (s) ·
−→
ds (257)

ϕ(ρ) =

∫
γ

k dq

r
(258)

E⃗(ρ) =

∫
γ

k dq

r2
r̂ (259)

The common thing all these share is they are integrals over some curve γ. Pic-
torially (draw in class),

Figure 6:
−→
ds is tangent vector to the curve

21.1 Parametrization

How do we actually perform such a calculation? We perform the following steps

1. Choose a parametrization of the curve γ

s(t) =

 x(t)
y(t)
z(t)

 e.g.
=

 5 sin 2t
t2

−t

 for t ∈ [0, 1]

2. Differentiate the coordinates with respect to the parameter.

−→
ds

dt
=

d

dt

 x(t)
y(t)
z(t)

 =

 10 cos 2t
2t
−1


3. Substitute back into the integral∫

γ

F⃗ (s) ·
−→
ds =

∫ 1

0

F⃗ (s(t)) ·
−→
ds

dt
dt =

∫ 1

0

F⃗ (s(t)) ·

 10 cos 2t
2t
−1

 dt
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4. Evaluate the 1D integral

F⃗ (x, y, z)
e.g.
=

 0
z
0

 (260)

∫ 1

0

F⃗ (s(t)) ·
−→
ds

dt
dt =

∫ 1

0

 0
−t
0

 ·

 10 cos 2t
2t
−1

 dt =

[
−2

3
t3
]1
0

= −2

3

I would like to place emphasis on this step∫
γ

F⃗ (s) ·
−→
ds =

∫ 1

0

F⃗ (s(t)) ·
−→
ds

dt
dt (261)

It is the step where we go from an abstract integral over a curve to an actual
calculation which we extract a numerical value from. Moreover, our choice of
parametrization will determine how easy our calculation is.

When we did the integral∫ b

−b

dx
√
x2 + a2

3 =
1

a2

[
x√

x2 + a2

]b
−b

(262)

One can verify that the derivative of the RHS is indeed our integrand. However,
it’s not immediately obvious how one can go from the LHS to the RHS. In other
words, if we had parametrized our curve using x, it is hard to perform the
integral. However, choosing a different parametrization θ = tan−1(x/a) will
make our life a lot easier∫ θ=tan−1( b

a )

θ=tan−1(− b
a )

a sec2 θdθ
√
a2 tan2 θ + a2

3 =
1

a2

∫ tan−1( b
a )

− tan−1( b
a )

cos θdθ (263)

This is what we are actually doing when we do U-substitution.

U-substitution is just a reparametrization of our curve!

Although it is easier to perform the calculation in the θ parametrization, it’s
geometrically easier to formulate the integral in the x parametrization. U-
substitution helps us reap the best of both worlds, by letting us formulate the
geometry of the line integral in the x parametrization, and evaluate the integral
analytically using the θ parametrization in a systematic and purely algebraic
way (so we won’t need to think of the geometry).

21.2 Integrating Infinitesimal Charge dq

One might see the line integral for electric potential

ϕ(ρ) =

∫
γ

k dq

r
(264)
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and wonder where our familiar
−→
ds went. In the context of physics, the curve γ

represents our line charge. Imagine a rope in 3D space, and imagine we sprinkle
charges along the rope such that the rope now has charge distribution λ(x). dq
means a ”small segment of line charge” along our curve. If we parametrize our
curve with parameter x, we may write dq = λ(x) dx. We will cover the example
of ”finite line charge” in greater detail later, but the parametrized integral will
end up being

ϕ(ρ) =

∫
γ

k dq

r
=

∫ a

−a

kλ(x) dx√
x2 + ρ2

(265)

21.3 Integrating Vector Functions

When we see a vector quantity in the integrand, such as in

E⃗(ρ) =

∫
γ

k dq

r2
r̂ (266)

It just means we sum up vectors instead of scalars (real numbers). Numeri-
cally, it effectively means we perform 3 integrals instead of 1. In most physics
questions, however, some components turn out to be zero by symmetry consid-
erations (integral of an odd function vanishes).

Also it’s worth mentioning that when summing up vectors, our choice of coor-
dinate system, and consequently the basis vectors, will determine the difficulty
of the calculation. A common choice is the cylindrical coordinate basis vectors
{ρ̂, ẑ, ϕ̂}.

22 Math: Cylindrical Coordinates Calculus

22.1 Recap: Polar Coordinates

Refer to section 15.

22.2 Cylindrical Coordinates

The 3rd dimension is simply ẑ. Points in 3D space are labelled by coordinates
ρ, z, ϕ.

22.3 Cylindrical Basis Vectors

Recall in section 15.1 that a basis vector at a point P is defined by ”change
each coordinate of P and see where it moves”. With this, the basis vectors
{ ˆrho, ẑ, ϕ̂} look like
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Figure 7: Basis Vectors in Cylindrical Coordinates

The position vector is

r⃗ = ρρ̂+ zẑ (267)

We can differentiate this vector to obtain velocity and acceleration. We will
end up with something like the centrifugal, Coriolis, and Euler force for the
ρ, ϕ coordinates. This is because dρ̂/dt involves both ρ̂ and ϕ̂, and similarly for

dρ̂/dt, whereas dẑ/dt is just żẑ. And ρ̂, ϕ̂ change depending on where we are in
space, while ẑ is a constant basis vector everywhere.

22.4 Integration in Cylindrical Coordinates

One can see a nice table at https://en.wikipedia.org/wiki/Del_in_cylindrical_
and_spherical_coordinates.

22.4.1 Line Integral

This is useful for Biot-Savart.

ds = dρ ρ̂+ ρ dϕ ϕ̂+ dz ẑ (268)

How one can use the above, is by choosing a parameterization t of the curve γ.
Then recalling Equation 261∫

γ

F(s) · ds =
∫ 1

0

F(s(t)) · ds
dt

dt (269)
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Writing
ds

dt
from the RHS in polar coordinates means

ds = dρ ρ̂+ ρ dϕ ϕ̂+ dz ẑ (270)∣∣∣∣ ”Divide” both sides by dt (271)

ds

dt
=

dρ

dt
ρ̂+ ρ

dϕ

dt
ϕ̂+

dz

dt
ẑ (272)

Note: Maybe you’re confused about what ds is, it seems to be both an infinites-
imal (due to the d) and a vector (due to bolded s), or an ”infinitesimal line
segment”. Moreover, you might be unsure what dρ on the RHS is (it’s actually
a ”differential form”).

To resolve these conceptual confusions, choose a parameterization,
which means symbolically dividing it by dt. Then, it’s now much clearer that
ds

dt
is the vector tangent to the curve, and

dρ

dt
is the derivative of the curve’s

ρ(t) coordinate with respect to time.

Extra: In most cases, the value of the line integral depends on the path/curve
taken, which means that to calculate the result, we definitely have to parame-
terize it. However, in some special cases known as conservative vector fields,
one can show that the result is independent of our path. In such cases, the vec-
tor field F(s) can be written directly in terms of ρ, ϕ, z and their respective
basis vectors (e.g. F = (1/ρ)ρ̂ for infinite line charge), and so we can evaluate
the line integral without choosing any parameterization. We will talk about
conservative vector fields in the Vector Calculus chapter.

22.4.2 Surface Integral

This probably isn’t used much.

dA = ρ dϕ dz ρ̂+ dρ dz ϕ̂+ ρ dρ dϕ ẑ (273)

We will talk about surface integrals in detail later.

22.4.3 Volume Integral

This is useful in Moment of Inertia calculations.

dV = ρ dρ dφ dz (274)

We will talk about volume integrals in detail later.

23 Physics: Electrostatics (1D Examples)

We consider charges of the following shapes
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• Ring Charge

• Finite Line

• Infinite Line

23.1 Ring Charge (Axial)

”Axial” means along the axis perpendicular to the plane spanned by the ring
charge.

Figure 8: Ring Charge

We can parameterize the ring by an angle θ, then the infinitesimal charge ds =
R dθ where R is the radius of the ring. dq = kλ ds = kλR dθ and r =

√
z2 +R2.

Calculating the potential,

ϕ(z) =

∫
C

k dq

r
(275)

=

∫ 2π

0

kλR dθ√
z2 +R2

(276)

=
λR

2ϵ0
√
z2 +R2

(277)

where we substituted k = 1/4πϵ0 in the final expression.
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For the electric field,

r⃗ = zẑ −Rρ̂ (278)

dE⃗ =
k dq

r3
r⃗ (279)

=
kλR dθ

√
z2 +R2

3 (zẑ −Rρ̂) (280)

=
kλR dθ

√
z2 +R2

3 z ẑ − kλR dθ
√
z2 +R2

3R ρ̂ (281)

= dEz ẑ + dEρ ρ̂ (282)

Eρ = 0 by symmetry (283)

Ez =

∫ 2π

0

kλR dθ
√
z2 +R2

3 z (284)

=
λRz

2ϵ0
√
z2 +R2

3 (285)

Once again, you can verify that Ez = −∂ϕ
∂z .

23.2 Finite Line Charge

Suppose we have a straight line charge of length 2a and charge density ρ. Find
the potential ϕ(ρ) and electric field E⃗(ρ) at distance ρ away from the center of
the line charge.

Figure 9: Finite Line Charge
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23.2.1 Potential

Each small charge dq contributes dϕ =
k dq

r
to the potential, where r is the

distance from the infinitesimal charge dq to the point in space where we are
measuring the potential of. Pictorially

Figure 10: Each dq contributes dϕ

The total electric potential will hence be

ϕ(ρ) =

∫
γ

k dq

r
(286)

where γ is the curve representing the line charge. To evaluate this line integral,
we choose a parameterization for the curve. In this case we choose z as the
parameter.

ϕ(ρ) =

∫ a

−a

kλ dz√
z2 + ρ2

(287)

This is just the integral in Section 20.3.1. Evaluating it yields

ϕ(ρ) = 2kλ ln

√
1 +

(
a

ρ

)2

+
a

ρ

 (288)

Right now we see that if we take the limit lima→∞, the potential at a finite
distance will diverge ϕ(ρ) → ∞. One also observes that the answer is only
dependent on the ratio a/ρ.
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23.2.2 Electric Field

Now let’s turn out attention to calculating the Electric Field. We will be inte-
grating the the infinitesimal Electric Field (a vector)

dE⃗ =
kλdz√
z2 + ρ2

3 r⃗ (289)

where r⃗ = −zẑ + ρρ̂ (290)

Because the direction of r⃗ changes depending on where you are along the z-axis,
we need to decompose r⃗ into constant bases before we perform integration

Substituting r⃗ = −zẑ + ρρ̂ (291)

dE⃗ =
−zkλdz√
z2 + ρ2

3 ẑ +
ρkλdz√
z2 + ρ2

3 ρ̂ (292)

= dEz ẑ + dEρ ρ̂ (293)

Integrating dEz and dEρ we obtain

Ez =

∫ a

−a

−zkλdz√
z2 + ρ2

3 = 0 (294)

Eρ =

∫ a

−a

ρkλdz√
z2 + ρ2

3 = 2kλ
a

ρ
√
a2 + ρ2

(295)

where Ez = 0 follows from the fact that the integrand is an odd function.

Extra: One can verify that electric field is the gradient of potential

Eρ = −∂ϕ(ρ)

∂ρ

23.3 Infinite Line Charge

23.3.1 Electric Field

Taking the limit a → ∞, we get

lim
a→∞

Eρ = 2kλ lim
a→∞

a

ρ
√

a2 + ρ2
(296)

= 2kλ lim
a→∞

1

ρ

√
1 +

(
ρ
a

)2 (297)

=
2kλ

ρ
(298)
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23.3.2 Potential (First Attempt: Pesky Infinity)

One can take the limit a → ∞. One sees that

lim
a→∞

ϕ(ρ) = 2kλ lim
a→∞

ln

√
1 +

(
a

ρ

)2

+
a

ρ

 = ∞ (299)

This may seem unintuitive as the potential is infinity no matter where we are in
space, but yet there is a notion of ”location A has higher potential than location
B” which leads to the non-zero electric field. The correct intuition is that
wherever you are, you experience electric field proportional to 1/ρ, which causes
you to accelerate and gain kinetic energy by Work-Energy theorem. Suppose
you place a stationary test charge at location X with the same polarity as the
infinite line charge. As it get repelled, the amount of kinetic energy it gains
is proportional to 1/ρ, which means it approaches 0 as you move to infinity.
However, even though the contribution converges to zero, the partial sum of
contributions diverges (Harmonic Series). As it flies off to infinity, it gains
infinite amount of kinetic energy. This implies that the potential at the starting
location X is infinity.

The same argument can be made for a test charge of opposite polarity, except
it flies towards the line charge instead.

23.3.3 Potential

There is a way to resolve the issue of ϕ(ρ) = ∞ so that we get ϕ(ρ) = −2kλ ln ρ,
which matches textbook results. Resolving this will also be a pedagogical exer-
cise in solidifying our conceptual understanding.

Point: Only potential differences matter.

The electric potential difference between two points is defined by

ϕB − ϕA = −
∫ B

A

E⃗ · ds⃗ (300)

For the infinite line charge,

E⃗ =
2kλ

ρ
ρ̂ (301)

(Extra: Because this vector field is curl-free, line integral doesn’t depend on
path taken)
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Choosing a radial path from A to B, we get

ϕB − ϕA = −
∫ B

A

E⃗ · ds⃗ (302)

= −
∫ ρB

ρA

2kλ

ρ
dρ (303)

= −2kλ ln

(
ρB
ρA

)
(304)

= −2kλ (ln ρB − ln ρA) (305)

Or for an indefinite integral,

ϕ(ρ) = −2kλ ln ρ+ C (306)

where C is an arbitrary constant (307)

Even though this seems like doesn’t make sense dimensionally since we can’t
plug in a dimensional quantity ρ (meters) into the ln function, the C here
actually saves the day. C/2kλ has units of ln(meters), and if we write C =
2kλ ln ρ0 then C sets the radius ρ0 of zero potential.

ϕ(ρ) = −2kλ ln

(
ρ

ρ0

)
(308)

We could choose any distance ρ0 to be our point of zero potential.

Remark: In fact, this illuminates why our first attempt gets infinity for the
potential! When we said that each infinitesimal line element dq had potential of
dϕ = k dq/r, we implicitly set the zero potential to be at infinity. That worked
well for the point charge, but if we set ρ0 = ∞ in 308, we see that gives us
ϕ(ρ) = −2kλ ln 0 = ∞.

When we set the location of zero potential matters! The 2 attempts of calcu-
lating potential of line charge

1. E field of point charge ⇒ Potential of point charge ⇒ Potential field of
line charge

2. E field of point charge ⇒ E field of line charge ⇒ Potential of line charge

Calculation 1 yields infinity because when we go from E field to potential (of
point charge), we implicitly set the point of zero potential to be at infinity.

Calculation 2 yields a sensible potential function because when we go from E
field to potential (of line charge), we set the point of zero potential to be some
finite distance.
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24 Math: Spherical Coordinates Calculus

25 Math: 2D Integrals

26 Physics: Electrostatics (2D Examples)

• Infinite Sheet

• Spherical Shell (Inside)

• Spherical Shell (Outside)

• Disk (Axial) (Morin)

• Disk (Rim) (Morin)

27 Math: Surface Integrals

27.1 Moment of Inertia

Integrating scalar functions over a surface is something we need to perform, for
say, finding the moment of inertia of a 2D laminar. Once again, to calculate a
surface integral, we need to find a parameterization of the surface. We illustrate
this with the following examples:

• Rectangular Laminar

• Disk (Perpendicular Axis)

• Disk (Parallel Axis)

27.1.1 Rectangular Laminar

We may parameterize a rectangular surface S as

S = {(x, y) | − a/2 ≤ x ≤ a/2, −b/2 ≤ y ≤ b/2} (309)
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Then performing the integral would just be substituting the parameterization
into the limits of integration

I =

∫∫
S
r2 dm (310)

=

∫ y=b/2

y=−b/2

∫ x=a/2

x=−a/2

(x2 + y2) σdx︸ ︷︷ ︸ dy (311)

= σ

∫ y=b/2

y=−b/2

[
x3

3
+ xy2

]x=a/2

x=−a/2

dy (312)

= σ

∫ y=b/2

y=−b/2

(
a3

12
+ ay2

)
dy (313)

= σ

[
a3

12
y +

ay3

3

]y=b/2

y=−b/2

(314)

= σ

(
a3b

12
+

ab3

12

)
(315)

=
1

12
m(a2 + b2) (316)

27.1.2 Disk (Perpendicular Axis)

Parameterizing the disk S as

S = {(ρ, θ) | 0 ≤ ρ ≤ R, 0 ≤ θ ≤ 2π} (317)

And remembering that for polar coordinates, the differential area form

dA = ρ dρ dθ (318)

Finding the moment of inertia of the disk about an axis perpendicular to the
disk,

I =

∫∫
S
r2 dm (319)

=

∫ θ=2π

θ=0

∫ ρ=R

ρ=0

ρ2 σ ρ dρ dθ (320)

= σ

∫ θ=2π

θ=0

[
ρ4

4

]R
0

dθ (321)

=
m

πR2

∫ θ=2π

θ=0

(
R4

4

)
dθ (322)

=
m

πR2
2π

R4

4
(323)

=
1

2
mR2 (324)
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27.1.3 Disk (Parallel Axis)

We parameterize the disk the same way, except now the distance r to the parallel
axis is

r = ρ sin θ (325)

So the moment of inertia with respect to an axis parallel to the disk is

I =

∫∫
S
r2 dm (326)

=

∫ θ=2π

θ=0

∫ ρ=R

ρ=0

ρ2 sin2 θ σ ρ dρ dθ (327)

= σ

∫ θ=2π

θ=0

[
ρ4

4

]R
0

sin2 θ dθ (328)

=
m

πR2

∫ θ=2π

θ=0

(
R4

4
sin2 θ

)
dθ (329)

=
m

πR2

R4

4
π (330)

=
1

4
mR2 (331)

27.2 Flux

Flux of a vector field E⃗ through a surface S is given by

Φ =

∫∫
S
E⃗ ·

−→
dA (332)

We need to parameterize the surface as usual, but this time our
−→
dA is a vec-

tor. The simplest example would be a point charge and a spherical surface
surrounding it.

27.2.1 Point Charge

To calculate the electric flux of a point charge, through a spherical Gaussian
surface S centered at the point charge, we can parameterize the Gaussian surface
as

S = {(ρ, θ, φ) | ρ = R, θ ∈ [0, π], φ ∈ [0, 2π]} (333)
−→
dA = ρ2 sin θ dθ dφ ρ̂+ ρ sin θ dρ dφ θ̂ + ρ dρ dθ φ̂ (334)

where we obtained
−→
dA from https://en.wikipedia.org/wiki/Del_in_cylindrical_

and_spherical_coordinates.
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The electric field of a point charge is

E⃗ =
kQ

ρ2
ρ̂ (335)

Hence the flux may be evaluated

Φ =

∫∫
S
E⃗ ·

−→
dA (336)

=

∫∫
S

kQ

ρ2
ρ̂ · (ρ2 sin θ dθ dφ ρ̂+ ρ sin θ dρ dφ θ̂ + ρ dρ dθ φ̂) (337)

=

∫∫
S

kQ

ρ2
ρ̂ · ρ2 sin θ dθ dφ ρ̂ (338)

=

∫ π

0

dθ

∫ 2π

0

dφ
kQ

ρ2
ρ2 sin θ (339)

= kQ

∫ π

0

dθ

∫ 2π

0

dφ sin θ (340)

= 2πkQ

∫ π

0

dθ sin θ (341)

= 4πkQ (342)

=
Q

ϵ0
(343)

This is a boring result, but it does illustrate how one performs flux calculations.
Another boring result you can check is that the flux of a dipole is 0.

27.2.2 Point Charge (Cartesian)

We could very well have chosen a different parameterization of our Gaussian
surface,

S = {(x, y, z) | x2 + y2 + z2 = R} (344)
−→
dA = dx dy ẑ + dy dz x̂+ dx dz ŷ (345)

This leads to a more complicated integral where the symmetry of the problem
is not manifest, but it’ll be a good exercise to verify that it leads to the same
answer for flux.

28 Gauss Law & Gaussian Surfaces

The integral form of Gauss law for electric field is∫∫
S
E · dA =

Qenclosed

ϵ0
(346)

The integral form of Gauss law for magnetic field is∫∫
S
B · dA = 0 (347)
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28.1 Infinite Sheet revisited

Consider a pillbox as a Gaussian surface. The flux through the sides of the
pillbox are 0 since the electric field is purely vertical due to symmetry of the
system. Hence, the total flux is through the top and bottom surfaces of the
cylindrical pillbox. By Gauss’ law,

Φtop +Φbottom =
σA

ϵ0
(348)

Since Φtop = Φbottom,

Φtop =
σA

2ϵ0
(349)

The flux is also by definition

Φtop = EzA (350)

So equating the two gets us

Ez =
σ

2ϵ0
(351)

which coincides with the answer we get through direct integration over the
infinite surface.

28.2 Shell Theorem

Theorem: A spherically symmetric charge distribution affects external ob-
jects as though all the charge was concentrated at a point at its center.

(Draw picture in class) Consider a spherical Gaussian surface of radius R around
the charge distribution. By spherical symmetry, total flux is just

Φ = E 4πR2 (352)

Gauss Law tells us

Φ =
Q

ϵ0
(353)

where Q is the total charge of the charge distribution. Equating the two, the
electric field is

E =
kQ

R2
(354)

which is the same result if we pretended all the charge was concentrated into a
point charge at the center of the charge distribution.

Note: If you are inside the charge distribution, however, you need to be more
careful when calculating how much charge your Gaussian surface encloses. Let’s
illustrate this with an example.
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28.3 Uniformly Charged Solid Sphere

Qn: If we have a uniformly charged solid (not hollow) sphere of radius R with
charge density ρ, find the electric field E and potential ϕ as a function of distance
r from the center. Consider regions both inside and outside the sphere.

We first find the electric field using Gaussian surface, then we integrate it to
find the potential.

28.4 Exercises

(Competitive Physics 5.4.1) Problem: Determine the electric field at a point l
2

above the center of a square with a uniform surface charge density σ and edge
length l.

Prove Earnshaw’s theorem with Gauss’ theorem.

29 Math: 3D Integrals

30 Math: Volume Integrals

• Filled Shell (Inside/Outside)

31 Assorted Questions II

31.0.1 SJPO 2016 General Round Q25

A circular disc with an axle of diameter 2 cm, is attached with strings to the
ceiling. The disc is rotated so that the strings wind up along the axle so that
the disc is raised up to the ceiling. The string is long such that that when the
disc is released from rest, its center of mass falls 2.0 m. The disc does not slip
from the string. Assume that the axle is massless and the disc has all of its 5 kg
mass at radius 3 cm. Estimate the acceleration of the center of mass of the disc
near the bottom of the fall.

(A) g

(B) 2g/3

(C) g/3

(D) g/5

(E) g/10
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31.0.2 SJPO 2018 General Round Q4

A sphere rolls without slipping down a rough inclined plane. The gain in rota-
tional kinetic energy is due directly to the work done by

(A) Static friction

(B) Kinetic friction

(C) Weight

(D) Normal contact force

(E) Air resistance

31.0.3 Taylor Problem 3.5

Consider an elastic collision between two equal mass bodies, one of which is
initially at rest. Let their velocities be v1 and v2 = 0 before the collision, and
v′
1 and v′

2 after. Show that v′
1 · v′

2 = 0.

Extra: This result was important in the history of atomic and nuclear physics:
That two bodies emerged from a collision traveling on perpendicular paths was
strongly suggestive that they had equal mass and had undergone an elastic
collision.

31.0.4 (JUICY) Sliding Mass Down a Hemisphere

A small marble placed at the top of a smooth hemisphere slides off the hemi-
sphere. At what angle θ from the vertical does the marble lose contact with the
hemisphere?

31.0.5 Morin Problem 2.4 (Keeping a book up)

A book of massM is positioned against a vertical wall. The coefficient of friction
between the book and the wall is µ. You wish to keep the book from falling by
pushing on it with a force F applied at an angle θ with respect to the horizontal
(−π/2 < θ < π/2), as shown in Figure 31.0.5.

(a) For a given θ, what is the minimum F required?

(b) For what θ is this minimum F the smallest? What is the corresponding
minimum F ?

(c) What is the limiting value of θ, below which there does not exist an F that
keeps the book up?
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31.0.6 Morin Problem 2.14 (Leaning sticks)

One stick leans on another as shown in Figure 31.0.6. A right angle is formed
where they meet, and the right stick makes an angle θ with the horizontal. The
left stick extends infinitesimally beyond the end of the right stick. The coef-
ficient of friction between the two sticks is µ. The sticks have the same mass
density per unit length and are both hinged at the ground. What is the mini-
mum angle θ for which the sticks don’t fall?

31.0.7 Morin Problem 2.15 (Supporting a ladder)

A ladder of length L and mass M has its bottom end attached to the ground
by a pivot. It makes an angle θ with the horizontal and is held up by a mass-
less stick of length ℓ that is also attached to the ground by a pivot (see Figure
31.0.7). The ladder and the stick are perpendicular to each other. Find the
force that the stick exerts on the ladder.
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31.0.8 (JUICY) Morin Problem 7.8 (Wrapping around a pole)

A puck of mass m sliding on frictionless ice is attached by a horizontal string
of length ℓ to a thin vertical pole of radius R. The puck initially travels in
(essentially) a circle around the pole at speed v0. The string wraps around the
pole, and the puck gets drawn in and eventually hits the pole. What quantity
is conserved during this motion? What is the puck’s speed right before it hits
the pole?
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32 Physics: Springs

32.0.1 SJPO 2018 General Round Q19

Two adventurous Physics students, each weighing 60 kg, jump off a 43 m high
bridge on a Bungee cord. The length of the cord is such that the students
together will just touch the water and rebound. While Bungee cords become
softer (more elastic) with increasing extension, for our calculations we can ap-
proximate the cord as having a constant stiffness of k = 330 N/m, and we can
ignore the height of the students and where the cord is tied on their body. What
is the unstretched length of the cord?

(A) 10.0 m

(B) 17.5 m

(C) 25.5 m

(D) 32.5 m

(E) 40.0 m

32.0.2 SJPO 2016 General Round Q13

An ideal uniform spring of mass m kg, unstretched length L m and spring con-
stant k Nm−1 stretches by an extension of x m when hung vertically. Which
statement below is correct? (You may want to know that the sum of N terms

in an arithmetic progression from 1 to N is N(N+1)
2 )

(A) The top half of the spring with mass m
2 kg has an extension x

2 m.

(B) The top half of the spring with length L+x
2 m supports mg

2 N.

(C) The top half of the spring with mass m
2 kg has a spring constant of

k
2Nm−1.

(D) The extension of the whole spring is mg
k m

(E) The length of the whole spring is L+ mg
2k m

Ans: E
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33 Physics: Center of Mass

33.0.1 SJPO 2018 General Round Q5

A thin wire is bent into the form of a three-sided shape as shown below. Each
segment has equal length l. The height of the centre of mass from the bottom
of the shape is

(A) l/2

(B) 2l/3

(C) l/3

(D) l/4

(E) 2l/5

33.0.2 SJPO 2018 General Round Q20

A dog weighing 10 kg is standing on a flatboat so that he is 20 m from the shore.
The boat weighs 40 kg and has uniform mass distribution. The dog walks 8.0 m
on the boat towards the shore and stops. For this calculation, one can assume
no friction or drag between the boat and the water. How far is the dog from
the shore now?

(A) 12.0 m

(B) 13.6 m

(C) 14.0 m

(D) 16.8 m

(E) 29.8 m
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34 Physics: Moment of Inertia

Examples: uniform rod, uniform disc, shell, solid sphere, rectangular plate,
griffiths textbook exercises.

34.0.1 SPhO 2020 Q1

A cylindrical rod has a radius of 1.0 cm and length 1.0 m. It is made up of two
sections, each of length 0.5 m. The material of one section is zinc and that of
the other section is copper. The end of the rod made of zinc is pivoted to a
fixed point O. The rod is first held so that it is horizontal and then released.
Determine the angular velocity of the rod when it is in the vertical position.
(Densities: zinc: 7135 kg m−3; copper: 8940 kg m−3) [10]
Ans: 0.91258 kg m2

35 Math: Vector Calculus
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36 Physics: Potentials & Potential Energy

36.0.1 SJPO 2018 General Round Q1

The figure shows the potential energy V (x) as a function of molecular separation

x for a diatomic molecule of reduced mass µ. If V (x) = V0

(
1− e−(x−x0)/δ

)2−V0,
the vibrational frequency f at the equilibrium position is (Hint: This series ex-

pansion may be useful. ex ≈ 1 + x+ x2

2! )

(A) 2V0

µδ

(B) V0

2π2µδ

(C)
√

2V0

µδ2

(D) 1
2π

√
2V0

µδ2

(E) 1
2π

√
V0

µδ2

Ans: D
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37 Physics: Electromagnetism

38 Physics: AC Circuits

39 Math: Differential Equations

39.1 SHM: Driven and Damping

39.2 Laplace Transform

40 Physics: Ropes

40.1 Friction - Capstan Equation

41 Physics: Pulleys

41.0.1 Qn: Morin Problem 8.1 (Massive pulley)

Consider the Atwood’s machine shown in Figure 41.0.1. The masses are m and
2m, and the pulley is a uniform disk of mass m and radius r. The string is
massless and does not slip with respect to the pulley. Find the acceleration of
the masses. Use conservation of energy.

Ans: 2g/7

42 Physics: DC
Circuits

43 Physics: Ef-
fective Resistance

43.1 Equipotential Method

43.2 Recursive

43.2.1 SJPO 2014 Gen-
eral Round Q35

As shown in the following
figure, each resister has a
resistance of R. What is
the effective resistance be-
tween point a and b ?

(A) (1 +
√
3)R
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(B) (1 +
√
5)R

(C) (1 +
√
5)R/2

(D) (1 +
√
3)R/2

(E) R

Ans: A

43.3 Injecting Cur-
rent

43.4 Extra: Circuit
Laplacian

44 Physics: Fluid
Mechanics

45 Physics: Waves

46 Physics: Op-
tics

47 Physics: Ther-
modynamics

48 Physics: Non-
Inertial Reference
Frame

48.0.1 SJPO 2014 General Round Q34

A candle is lighted in a gas
jar as shown below. If
the jar swings in a circle
about O at a constant speed,
in which direction will the
flame of the candle point?

(A) Forward, in the di-
rection of motion.

(B) Backward, opposite
to its velocity.
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(C) Still vertically up-
wards.

(D) Inward, points to-
wards O.

(E) Outwards, away from
O.

Ans: D

48.0.2 SJPO 2018 General Round Q3

A plumb line is held steady
while being carried in a mov-
ing train. The mass of the
plumb bob ism, and the train
is accelerating in the forward
direction at 0.5g. What is the
tension in the string?

(A) 0.5mg

(B) 1.12mg

(C) 1.22mg

(D) 2mg

(E) Cannot be determined from the given information.
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